UNPKG

create-expo-cljs-app

Version:

Create a react native application with Expo and Shadow-CLJS!

151 lines (132 loc) 3.93 kB
import { val } from '../val'; import AnimatedNode from './AnimatedNode'; import invariant from 'invariant'; // These values are established by empiricism with tests (tradeoff: performance VS precision) var NEWTON_ITERATIONS = 4; var NEWTON_MIN_SLOPE = 0.001; var SUBDIVISION_PRECISION = 0.0000001; var SUBDIVISION_MAX_ITERATIONS = 10; var kSplineTableSize = 11; var kSampleStepSize = 1.0 / (kSplineTableSize - 1.0); var float32ArraySupported = typeof Float32Array === 'function'; function A(aA1, aA2) { return 1.0 - 3.0 * aA2 + 3.0 * aA1; } function B(aA1, aA2) { return 3.0 * aA2 - 6.0 * aA1; } function C(aA1) { return 3.0 * aA1; } // Returns x(t) given t, x1, and x2, or y(t) given t, y1, and y2. function calcBezier(aT, aA1, aA2) { return ((A(aA1, aA2) * aT + B(aA1, aA2)) * aT + C(aA1)) * aT; } // Returns dx/dt given t, x1, and x2, or dy/dt given t, y1, and y2. function getSlope(aT, aA1, aA2) { return 3.0 * A(aA1, aA2) * aT * aT + 2.0 * B(aA1, aA2) * aT + C(aA1); } function binarySubdivide(aX, aA, aB, mX1, mX2) { var currentX = 0; var currentT = 0; var i = 0; do { currentT = aA + (aB - aA) / 2.0; currentX = calcBezier(currentT, mX1, mX2) - aX; if (currentX > 0.0) { aB = currentT; } else { aA = currentT; } } while ( Math.abs(currentX) > SUBDIVISION_PRECISION && ++i < SUBDIVISION_MAX_ITERATIONS ); return currentT; } function newtonRaphsonIterate(aX, aGuessT, mX1, mX2) { for (var i = 0; i < NEWTON_ITERATIONS; ++i) { var currentSlope = getSlope(aGuessT, mX1, mX2); if (currentSlope === 0.0) { return aGuessT; } var currentX = calcBezier(aGuessT, mX1, mX2) - aX; aGuessT -= currentX / currentSlope; } return aGuessT; } function bezier(mX1, mY1, mX2, mY2) { // Precompute samples table var sampleValues = float32ArraySupported ? new Float32Array(kSplineTableSize) : new Array(kSplineTableSize); if (mX1 !== mY1 || mX2 !== mY2) { for (var i = 0; i < kSplineTableSize; ++i) { sampleValues[i] = calcBezier(i * kSampleStepSize, mX1, mX2); } } function getTForX(aX) { var intervalStart = 0.0; var currentSample = 1; var lastSample = kSplineTableSize - 1; for ( ; currentSample !== lastSample && sampleValues[currentSample] <= aX; ++currentSample ) { intervalStart += kSampleStepSize; } --currentSample; // Interpolate to provide an initial guess for t var dist = (aX - sampleValues[currentSample]) / (sampleValues[currentSample + 1] - sampleValues[currentSample]); var guessForT = intervalStart + dist * kSampleStepSize; var initialSlope = getSlope(guessForT, mX1, mX2); if (initialSlope >= NEWTON_MIN_SLOPE) { return newtonRaphsonIterate(aX, guessForT, mX1, mX2); } else if (initialSlope === 0.0) { return guessForT; } else { return binarySubdivide( aX, intervalStart, intervalStart + kSampleStepSize, mX1, mX2 ); } } return function BezierEasing(x) { if (mX1 === mY1 && mX2 === mY2) { return x; // linear } // Because JavaScript number are imprecise, we should guarantee the extremes are right. if (x === 0) { return 0; } if (x === 1) { return 1; } return calcBezier(getTForX(x), mY1, mY2); }; } export default class AnimatedBezier extends AnimatedNode { _value; _bezier; constructor(value, mX1, mY1, mX2, mY2) { invariant( value instanceof AnimatedNode, `Reanimated: Bezier node argument should be of type AnimatedNode but got ${value}` ); super({ type: 'bezier', mX1, mY1, mX2, mY2, input: value }, [value]); this._value = value; this._bezier = bezier(mX1, mY1, mX2, mY2); } toString() { return `AnimatedBezier, id: ${this.__nodeID}`; } __onEvaluate() { return this._bezier(val(this._value)); } }