create-ai-chat-context
Version:
🚀 BREAKTHROUGH: Detection-Hourglass-System (DHS) - Revolutionary auto-detection of AI conversation chunks with zero-cost processing. Universal AI memory that actually works!
58 lines (40 loc) • 1.57 kB
Markdown
# Go Project Overview
## Project Context
**Technology Stack:** Go backend and systems projects
- **Language:** Go 1.21+
- **Package Manager:** Go modules
- **Web Framework:** Gin, Echo, or standard net/http
- **Database:** GORM, sqlx, or database/sql
- **Testing:** Built-in testing package
## Architecture & Patterns
- **Packages:** Organized by functionality
- **Interfaces:** Small, focused interfaces
- **Goroutines:** Concurrent programming
- **Channels:** Communication between goroutines
## Development Workflow
- **Development:** go run, go build
- **Testing:** go test with benchmarks
- **Formatting:** gofmt, goimports
- **Linting:** golangci-lint, staticcheck
## Key Dependencies & Tools
- Web: gin-gonic/gin, labstack/echo
- Database: gorm.io/gorm, jmoiron/sqlx
- Testing: stretchr/testify, golang/mock
- Utilities: spf13/cobra, spf13/viper
## Performance Considerations
- **Profiling:** go tool pprof
- **Benchmarking:** go test -bench
- **Memory:** Garbage collector tuning
- **Concurrency:** Worker pools, rate limiting
## Security & Best Practices
- **Dependencies:** go mod audit
- **Static Analysis:** gosec security scanner
- **Input Validation:** Structured validation
- **TLS:** Proper certificate handling
## Deployment Strategy
- **Binary:** Single executable
- **Containerization:** Minimal Docker images
- **Cloud:** Google Cloud Run, AWS Lambda
- **Orchestration:** Kubernetes native
---
**For AI Assistants:** This project uses Go patterns and conventions. Consider the technology stack and architecture when making suggestions.