cos-js-sdk-v5
Version:
JavaScript SDK for [腾讯云对象存储](https://cloud.tencent.com/product/cos)
1,044 lines (938 loc) • 988 kB
JavaScript
(function () {
var CRC_BASE = (function () {
// The Module object: Our interface to the outside world. We import
// and export values on it, and do the work to get that through
// closure compiler if necessary. There are various ways Module can be used:
// 1. Not defined. We create it here
// 2. A function parameter, function(Module) { ..generated code.. }
// 3. pre-run appended it, var Module = {}; ..generated code..
// 4. External script tag defines var Module.
// We need to do an eval in order to handle the closure compiler
// case, where this code here is minified but Module was defined
// elsewhere (e.g. case 4 above). We also need to check if Module
// already exists (e.g. case 3 above).
// Note that if you want to run closure, and also to use Module
// after the generated code, you will need to define var Module = {};
// before the code. Then that object will be used in the code, and you
// can continue to use Module afterwards as well.
var Module;
if (!Module) Module = (typeof Module !== 'undefined' ? Module : null) || {};
// Sometimes an existing Module object exists with properties
// meant to overwrite the default module functionality. Here
// we collect those properties and reapply _after_ we configure
// the current environment's defaults to avoid having to be so
// defensive during initialization.
var moduleOverrides = {};
for (var key in Module) {
if (Module.hasOwnProperty(key)) {
moduleOverrides[key] = Module[key];
}
}
// The environment setup code below is customized to use Module.
// *** Environment setup code ***
var ENVIRONMENT_IS_WEB = false;
var ENVIRONMENT_IS_WORKER = false;
var ENVIRONMENT_IS_NODE = false;
var ENVIRONMENT_IS_SHELL = false;
// Three configurations we can be running in:
// 1) We could be the application main() thread running in the main JS UI thread. (ENVIRONMENT_IS_WORKER == false and ENVIRONMENT_IS_PTHREAD == false)
// 2) We could be the application main() thread proxied to worker. (with Emscripten -s PROXY_TO_WORKER=1) (ENVIRONMENT_IS_WORKER == true, ENVIRONMENT_IS_PTHREAD == false)
// 3) We could be an application pthread running in a worker. (ENVIRONMENT_IS_WORKER == true and ENVIRONMENT_IS_PTHREAD == true)
if (Module['ENVIRONMENT']) {
if (Module['ENVIRONMENT'] === 'WEB') {
ENVIRONMENT_IS_WEB = true;
} else if (Module['ENVIRONMENT'] === 'WORKER') {
ENVIRONMENT_IS_WORKER = true;
} else if (Module['ENVIRONMENT'] === 'NODE') {
ENVIRONMENT_IS_NODE = true;
} else if (Module['ENVIRONMENT'] === 'SHELL') {
ENVIRONMENT_IS_SHELL = true;
} else {
throw new Error('The provided Module[\'ENVIRONMENT\'] value is not valid. It must be one of: WEB|WORKER|NODE|SHELL.');
}
} else {
ENVIRONMENT_IS_WEB = typeof window === 'object';
ENVIRONMENT_IS_WORKER = typeof importScripts === 'function';
ENVIRONMENT_IS_NODE = typeof process === 'object' && typeof require === 'function' && !ENVIRONMENT_IS_WEB && !ENVIRONMENT_IS_WORKER;
ENVIRONMENT_IS_SHELL = !ENVIRONMENT_IS_WEB && !ENVIRONMENT_IS_NODE && !ENVIRONMENT_IS_WORKER;
}
if (ENVIRONMENT_IS_NODE) {
// Expose functionality in the same simple way that the shells work
// Note that we pollute the global namespace here, otherwise we break in node
if (!Module['print']) Module['print'] = console.log;
if (!Module['printErr']) Module['printErr'] = console.warn;
var nodeFS;
var nodePath;
Module['read'] = function shell_read(filename, binary) {
if (!nodeFS) nodeFS = require('fs');
if (!nodePath) nodePath = require('path');
filename = nodePath['normalize'](filename);
var ret = nodeFS['readFileSync'](filename);
return binary ? ret : ret.toString();
};
Module['readBinary'] = function readBinary(filename) {
var ret = Module['read'](filename, true);
if (!ret.buffer) {
ret = new Uint8Array(ret);
}
assert(ret.buffer);
return ret;
};
Module['load'] = function load(f) {
globalEval(read(f));
};
if (!Module['thisProgram']) {
if (process['argv'].length > 1) {
Module['thisProgram'] = process['argv'][1].replace(/\\/g, '/');
} else {
Module['thisProgram'] = 'unknown-program';
}
}
Module['arguments'] = process['argv'].slice(2);
if (typeof module !== 'undefined') {
module['exports'] = Module;
}
process['on']('uncaughtException', function(ex) {
// suppress ExitStatus exceptions from showing an error
if (!(ex instanceof ExitStatus)) {
throw ex;
}
});
Module['inspect'] = function () { return '[Emscripten Module object]'; };
}
else if (ENVIRONMENT_IS_SHELL) {
if (!Module['print']) Module['print'] = print;
if (typeof printErr != 'undefined') Module['printErr'] = printErr; // not present in v8 or older sm
if (typeof read != 'undefined') {
Module['read'] = read;
} else {
Module['read'] = function shell_read() { throw 'no read() available' };
}
Module['readBinary'] = function readBinary(f) {
if (typeof readbuffer === 'function') {
return new Uint8Array(readbuffer(f));
}
var data = read(f, 'binary');
assert(typeof data === 'object');
return data;
};
if (typeof scriptArgs != 'undefined') {
Module['arguments'] = scriptArgs;
} else if (typeof arguments != 'undefined') {
Module['arguments'] = arguments;
}
if (typeof quit === 'function') {
Module['quit'] = function(status, toThrow) {
quit(status);
}
}
}
else if (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) {
Module['read'] = function shell_read(url) {
var xhr = new XMLHttpRequest();
xhr.open('GET', url, false);
xhr.send(null);
return xhr.responseText;
};
if (ENVIRONMENT_IS_WORKER) {
Module['readBinary'] = function readBinary(url) {
var xhr = new XMLHttpRequest();
xhr.open('GET', url, false);
xhr.responseType = 'arraybuffer';
xhr.send(null);
return new Uint8Array(xhr.response);
};
}
Module['readAsync'] = function readAsync(url, onload, onerror) {
var xhr = new XMLHttpRequest();
xhr.open('GET', url, true);
xhr.responseType = 'arraybuffer';
xhr.onload = function xhr_onload() {
if (xhr.status == 200 || (xhr.status == 0 && xhr.response)) { // file URLs can return 0
onload(xhr.response);
} else {
onerror();
}
};
xhr.onerror = onerror;
xhr.send(null);
};
if (typeof arguments != 'undefined') {
Module['arguments'] = arguments;
}
if (typeof console !== 'undefined') {
if (!Module['print']) Module['print'] = function shell_print(x) {
console.log(x);
};
if (!Module['printErr']) Module['printErr'] = function shell_printErr(x) {
console.warn(x);
};
} else {
// Probably a worker, and without console.log. We can do very little here...
var TRY_USE_DUMP = false;
if (!Module['print']) Module['print'] = (TRY_USE_DUMP && (typeof(dump) !== "undefined") ? (function(x) {
dump(x);
}) : (function(x) {
// self.postMessage(x); // enable this if you want stdout to be sent as messages
}));
}
if (ENVIRONMENT_IS_WORKER) {
Module['load'] = importScripts;
}
if (typeof Module['setWindowTitle'] === 'undefined') {
Module['setWindowTitle'] = function(title) { document.title = title };
}
}
else {
// Unreachable because SHELL is dependant on the others
throw 'Unknown runtime environment. Where are we?';
}
function globalEval(x) {
eval.call(null, x);
}
if (!Module['load'] && Module['read']) {
Module['load'] = function load(f) {
globalEval(Module['read'](f));
};
}
if (!Module['print']) {
Module['print'] = function(){};
}
if (!Module['printErr']) {
Module['printErr'] = Module['print'];
}
if (!Module['arguments']) {
Module['arguments'] = [];
}
if (!Module['thisProgram']) {
Module['thisProgram'] = './this.program';
}
if (!Module['quit']) {
Module['quit'] = function(status, toThrow) {
throw toThrow;
}
}
// *** Environment setup code ***
// Closure helpers
Module.print = Module['print'];
Module.printErr = Module['printErr'];
// Callbacks
Module['preRun'] = [];
Module['postRun'] = [];
// Merge back in the overrides
for (var key in moduleOverrides) {
if (moduleOverrides.hasOwnProperty(key)) {
Module[key] = moduleOverrides[key];
}
}
// Free the object hierarchy contained in the overrides, this lets the GC
// reclaim data used e.g. in memoryInitializerRequest, which is a large typed array.
moduleOverrides = undefined;
// {{PREAMBLE_ADDITIONS}}
// === Preamble library stuff ===
// Documentation for the public APIs defined in this file must be updated in:
// site/source/docs/api_reference/preamble.js.rst
// A prebuilt local version of the documentation is available at:
// site/build/text/docs/api_reference/preamble.js.txt
// You can also build docs locally as HTML or other formats in site/
// An online HTML version (which may be of a different version of Emscripten)
// is up at http://kripken.github.io/emscripten-site/docs/api_reference/preamble.js.html
//========================================
// Runtime code shared with compiler
//========================================
var Runtime = {
setTempRet0: function (value) {
tempRet0 = value;
return value;
},
getTempRet0: function () {
return tempRet0;
},
stackSave: function () {
return STACKTOP;
},
stackRestore: function (stackTop) {
STACKTOP = stackTop;
},
getNativeTypeSize: function (type) {
switch (type) {
case 'i1': case 'i8': return 1;
case 'i16': return 2;
case 'i32': return 4;
case 'i64': return 8;
case 'float': return 4;
case 'double': return 8;
default: {
if (type[type.length-1] === '*') {
return Runtime.QUANTUM_SIZE; // A pointer
} else if (type[0] === 'i') {
var bits = parseInt(type.substr(1));
assert(bits % 8 === 0);
return bits/8;
} else {
return 0;
}
}
}
},
getNativeFieldSize: function (type) {
return Math.max(Runtime.getNativeTypeSize(type), Runtime.QUANTUM_SIZE);
},
STACK_ALIGN: 16,
prepVararg: function (ptr, type) {
if (type === 'double' || type === 'i64') {
// move so the load is aligned
if (ptr & 7) {
assert((ptr & 7) === 4);
ptr += 4;
}
} else {
assert((ptr & 3) === 0);
}
return ptr;
},
getAlignSize: function (type, size, vararg) {
// we align i64s and doubles on 64-bit boundaries, unlike x86
if (!vararg && (type == 'i64' || type == 'double')) return 8;
if (!type) return Math.min(size, 8); // align structures internally to 64 bits
return Math.min(size || (type ? Runtime.getNativeFieldSize(type) : 0), Runtime.QUANTUM_SIZE);
},
dynCall: function (sig, ptr, args) {
if (args && args.length) {
assert(args.length == sig.length-1);
assert(('dynCall_' + sig) in Module, 'bad function pointer type - no table for sig \'' + sig + '\'');
return Module['dynCall_' + sig].apply(null, [ptr].concat(args));
} else {
assert(sig.length == 1);
assert(('dynCall_' + sig) in Module, 'bad function pointer type - no table for sig \'' + sig + '\'');
return Module['dynCall_' + sig].call(null, ptr);
}
},
functionPointers: [],
addFunction: function (func) {
for (var i = 0; i < Runtime.functionPointers.length; i++) {
if (!Runtime.functionPointers[i]) {
Runtime.functionPointers[i] = func;
return 2*(1 + i);
}
}
throw 'Finished up all reserved function pointers. Use a higher value for RESERVED_FUNCTION_POINTERS.';
},
removeFunction: function (index) {
Runtime.functionPointers[(index-2)/2] = null;
},
warnOnce: function (text) {
if (!Runtime.warnOnce.shown) Runtime.warnOnce.shown = {};
if (!Runtime.warnOnce.shown[text]) {
Runtime.warnOnce.shown[text] = 1;
Module.printErr(text);
}
},
funcWrappers: {},
getFuncWrapper: function (func, sig) {
assert(sig);
if (!Runtime.funcWrappers[sig]) {
Runtime.funcWrappers[sig] = {};
}
var sigCache = Runtime.funcWrappers[sig];
if (!sigCache[func]) {
// optimize away arguments usage in common cases
if (sig.length === 1) {
sigCache[func] = function dynCall_wrapper() {
return Runtime.dynCall(sig, func);
};
} else if (sig.length === 2) {
sigCache[func] = function dynCall_wrapper(arg) {
return Runtime.dynCall(sig, func, [arg]);
};
} else {
// general case
sigCache[func] = function dynCall_wrapper() {
return Runtime.dynCall(sig, func, Array.prototype.slice.call(arguments));
};
}
}
return sigCache[func];
},
getCompilerSetting: function (name) {
throw 'You must build with -s RETAIN_COMPILER_SETTINGS=1 for Runtime.getCompilerSetting or emscripten_get_compiler_setting to work';
},
stackAlloc: function (size) { var ret = STACKTOP;STACKTOP = (STACKTOP + size)|0;STACKTOP = (((STACKTOP)+15)&-16);(assert((((STACKTOP|0) < (STACK_MAX|0))|0))|0); return ret; },
staticAlloc: function (size) { var ret = STATICTOP;STATICTOP = (STATICTOP + (assert(!staticSealed),size))|0;STATICTOP = (((STATICTOP)+15)&-16); return ret; },
dynamicAlloc: function (size) { assert(DYNAMICTOP_PTR);var ret = HEAP32[DYNAMICTOP_PTR>>2];var end = (((ret + size + 15)|0) & -16);HEAP32[DYNAMICTOP_PTR>>2] = end;if (end >= TOTAL_MEMORY) {var success = enlargeMemory();if (!success) {HEAP32[DYNAMICTOP_PTR>>2] = ret;return 0;}}return ret;},
alignMemory: function (size,quantum) { var ret = size = Math.ceil((size)/(quantum ? quantum : 16))*(quantum ? quantum : 16); return ret; },
makeBigInt: function (low,high,unsigned) { var ret = (unsigned ? ((+((low>>>0)))+((+((high>>>0)))*4294967296.0)) : ((+((low>>>0)))+((+((high|0)))*4294967296.0))); return ret; },
GLOBAL_BASE: 8,
QUANTUM_SIZE: 4,
__dummy__: 0
}
Module["Runtime"] = Runtime;
//========================================
// Runtime essentials
//========================================
var ABORT = 0; // whether we are quitting the application. no code should run after this. set in exit() and abort()
var EXITSTATUS = 0;
/** @type {function(*, string=)} */
function assert(condition, text) {
if (!condition) {
abort('Assertion failed: ' + text);
}
}
var globalScope = this;
// Returns the C function with a specified identifier (for C++, you need to do manual name mangling)
function getCFunc(ident) {
var func = Module['_' + ident]; // closure exported function
if (!func) {
try { func = eval('_' + ident); } catch(e) {}
}
assert(func, 'Cannot call unknown function ' + ident + ' (perhaps LLVM optimizations or closure removed it?)');
return func;
}
var cwrap, ccall;
(function(){
var JSfuncs = {
// Helpers for cwrap -- it can't refer to Runtime directly because it might
// be renamed by closure, instead it calls JSfuncs['stackSave'].body to find
// out what the minified function name is.
'stackSave': function() {
Runtime.stackSave()
},
'stackRestore': function() {
Runtime.stackRestore()
},
// type conversion from js to c
'arrayToC' : function(arr) {
var ret = Runtime.stackAlloc(arr.length);
writeArrayToMemory(arr, ret);
return ret;
},
'stringToC' : function(str) {
var ret = 0;
if (str !== null && str !== undefined && str !== 0) { // null string
// at most 4 bytes per UTF-8 code point, +1 for the trailing '\0'
var len = (str.length << 2) + 1;
ret = Runtime.stackAlloc(len);
stringToUTF8(str, ret, len);
}
return ret;
}
};
// For fast lookup of conversion functions
var toC = {'string' : JSfuncs['stringToC'], 'array' : JSfuncs['arrayToC']};
// C calling interface.
ccall = function ccallFunc(ident, returnType, argTypes, args, opts) {
var func = getCFunc(ident);
var cArgs = [];
var stack = 0;
assert(returnType !== 'array', 'Return type should not be "array".');
if (args) {
for (var i = 0; i < args.length; i++) {
var converter = toC[argTypes[i]];
if (converter) {
if (stack === 0) stack = Runtime.stackSave();
cArgs[i] = converter(args[i]);
} else {
cArgs[i] = args[i];
}
}
}
var ret = func.apply(null, cArgs);
if ((!opts || !opts.async) && typeof EmterpreterAsync === 'object') {
assert(!EmterpreterAsync.state, 'cannot start async op with normal JS calling ccall');
}
if (opts && opts.async) assert(!returnType, 'async ccalls cannot return values');
if (returnType === 'string') ret = Pointer_stringify(ret);
if (stack !== 0) {
if (opts && opts.async) {
EmterpreterAsync.asyncFinalizers.push(function() {
Runtime.stackRestore(stack);
});
return;
}
Runtime.stackRestore(stack);
}
return ret;
}
var sourceRegex = /^function\s*[a-zA-Z$_0-9]*\s*\(([^)]*)\)\s*{\s*([^*]*?)[\s;]*(?:return\s*(.*?)[;\s]*)?}$/;
function parseJSFunc(jsfunc) {
// Match the body and the return value of a javascript function source
var parsed = jsfunc.toString().match(sourceRegex).slice(1);
return {arguments : parsed[0], body : parsed[1], returnValue: parsed[2]}
}
// sources of useful functions. we create this lazily as it can trigger a source decompression on this entire file
var JSsource = null;
function ensureJSsource() {
if (!JSsource) {
JSsource = {};
for (var fun in JSfuncs) {
if (JSfuncs.hasOwnProperty(fun)) {
// Elements of toCsource are arrays of three items:
// the code, and the return value
JSsource[fun] = parseJSFunc(JSfuncs[fun]);
}
}
}
}
cwrap = function cwrap(ident, returnType, argTypes) {
argTypes = argTypes || [];
var cfunc = getCFunc(ident);
// When the function takes numbers and returns a number, we can just return
// the original function
var numericArgs = argTypes.every(function(type){ return type === 'number'});
var numericRet = (returnType !== 'string');
if ( numericRet && numericArgs) {
return cfunc;
}
// Creation of the arguments list (["$1","$2",...,"$nargs"])
var argNames = argTypes.map(function(x,i){return '$'+i});
var funcstr = "(function(" + argNames.join(',') + ") {";
var nargs = argTypes.length;
if (!numericArgs) {
// Generate the code needed to convert the arguments from javascript
// values to pointers
ensureJSsource();
funcstr += 'var stack = ' + JSsource['stackSave'].body + ';';
for (var i = 0; i < nargs; i++) {
var arg = argNames[i], type = argTypes[i];
if (type === 'number') continue;
var convertCode = JSsource[type + 'ToC']; // [code, return]
funcstr += 'var ' + convertCode.arguments + ' = ' + arg + ';';
funcstr += convertCode.body + ';';
funcstr += arg + '=(' + convertCode.returnValue + ');';
}
}
// When the code is compressed, the name of cfunc is not literally 'cfunc' anymore
var cfuncname = parseJSFunc(function(){return cfunc}).returnValue;
// Call the function
funcstr += 'var ret = ' + cfuncname + '(' + argNames.join(',') + ');';
if (!numericRet) { // Return type can only by 'string' or 'number'
// Convert the result to a string
var strgfy = parseJSFunc(function(){return Pointer_stringify}).returnValue;
funcstr += 'ret = ' + strgfy + '(ret);';
}
funcstr += "if (typeof EmterpreterAsync === 'object') { assert(!EmterpreterAsync.state, 'cannot start async op with normal JS calling cwrap') }";
if (!numericArgs) {
// If we had a stack, restore it
ensureJSsource();
funcstr += JSsource['stackRestore'].body.replace('()', '(stack)') + ';';
}
funcstr += 'return ret})';
return eval(funcstr);
};
})();
Module["ccall"] = ccall;
Module["cwrap"] = cwrap;
/** @type {function(number, number, string, boolean=)} */
function setValue(ptr, value, type, noSafe) {
type = type || 'i8';
if (type.charAt(type.length-1) === '*') type = 'i32'; // pointers are 32-bit
switch(type) {
case 'i1': HEAP8[((ptr)>>0)]=value; break;
case 'i8': HEAP8[((ptr)>>0)]=value; break;
case 'i16': HEAP16[((ptr)>>1)]=value; break;
case 'i32': HEAP32[((ptr)>>2)]=value; break;
case 'i64': (tempI64 = [value>>>0,(tempDouble=value,(+(Math_abs(tempDouble))) >= 1.0 ? (tempDouble > 0.0 ? ((Math_min((+(Math_floor((tempDouble)/4294967296.0))), 4294967295.0))|0)>>>0 : (~~((+(Math_ceil((tempDouble - +(((~~(tempDouble)))>>>0))/4294967296.0)))))>>>0) : 0)],HEAP32[((ptr)>>2)]=tempI64[0],HEAP32[(((ptr)+(4))>>2)]=tempI64[1]); break;
case 'float': HEAPF32[((ptr)>>2)]=value; break;
case 'double': HEAPF64[((ptr)>>3)]=value; break;
default: abort('invalid type for setValue: ' + type);
}
}
Module["setValue"] = setValue;
/** @type {function(number, string, boolean=)} */
function getValue(ptr, type, noSafe) {
type = type || 'i8';
if (type.charAt(type.length-1) === '*') type = 'i32'; // pointers are 32-bit
switch(type) {
case 'i1': return HEAP8[((ptr)>>0)];
case 'i8': return HEAP8[((ptr)>>0)];
case 'i16': return HEAP16[((ptr)>>1)];
case 'i32': return HEAP32[((ptr)>>2)];
case 'i64': return HEAP32[((ptr)>>2)];
case 'float': return HEAPF32[((ptr)>>2)];
case 'double': return HEAPF64[((ptr)>>3)];
default: abort('invalid type for setValue: ' + type);
}
return null;
}
Module["getValue"] = getValue;
var ALLOC_NORMAL = 0; // Tries to use _malloc()
var ALLOC_STACK = 1; // Lives for the duration of the current function call
var ALLOC_STATIC = 2; // Cannot be freed
var ALLOC_DYNAMIC = 3; // Cannot be freed except through sbrk
var ALLOC_NONE = 4; // Do not allocate
Module["ALLOC_NORMAL"] = ALLOC_NORMAL;
Module["ALLOC_STACK"] = ALLOC_STACK;
Module["ALLOC_STATIC"] = ALLOC_STATIC;
Module["ALLOC_DYNAMIC"] = ALLOC_DYNAMIC;
Module["ALLOC_NONE"] = ALLOC_NONE;
// allocate(): This is for internal use. You can use it yourself as well, but the interface
// is a little tricky (see docs right below). The reason is that it is optimized
// for multiple syntaxes to save space in generated code. So you should
// normally not use allocate(), and instead allocate memory using _malloc(),
// initialize it with setValue(), and so forth.
// @slab: An array of data, or a number. If a number, then the size of the block to allocate,
// in *bytes* (note that this is sometimes confusing: the next parameter does not
// affect this!)
// @types: Either an array of types, one for each byte (or 0 if no type at that position),
// or a single type which is used for the entire block. This only matters if there
// is initial data - if @slab is a number, then this does not matter at all and is
// ignored.
// @allocator: How to allocate memory, see ALLOC_*
/** @type {function((TypedArray|Array<number>|number), string, number, number=)} */
function allocate(slab, types, allocator, ptr) {
var zeroinit, size;
if (typeof slab === 'number') {
zeroinit = true;
size = slab;
} else {
zeroinit = false;
size = slab.length;
}
var singleType = typeof types === 'string' ? types : null;
var ret;
if (allocator == ALLOC_NONE) {
ret = ptr;
} else {
ret = [typeof _malloc === 'function' ? _malloc : Runtime.staticAlloc, Runtime.stackAlloc, Runtime.staticAlloc, Runtime.dynamicAlloc][allocator === undefined ? ALLOC_STATIC : allocator](Math.max(size, singleType ? 1 : types.length));
}
if (zeroinit) {
var ptr = ret, stop;
assert((ret & 3) == 0);
stop = ret + (size & ~3);
for (; ptr < stop; ptr += 4) {
HEAP32[((ptr)>>2)]=0;
}
stop = ret + size;
while (ptr < stop) {
HEAP8[((ptr++)>>0)]=0;
}
return ret;
}
if (singleType === 'i8') {
if (slab.subarray || slab.slice) {
HEAPU8.set(/** @type {!Uint8Array} */ (slab), ret);
} else {
HEAPU8.set(new Uint8Array(slab), ret);
}
return ret;
}
var i = 0, type, typeSize, previousType;
while (i < size) {
var curr = slab[i];
if (typeof curr === 'function') {
curr = Runtime.getFunctionIndex(curr);
}
type = singleType || types[i];
if (type === 0) {
i++;
continue;
}
assert(type, 'Must know what type to store in allocate!');
if (type == 'i64') type = 'i32'; // special case: we have one i32 here, and one i32 later
setValue(ret+i, curr, type);
// no need to look up size unless type changes, so cache it
if (previousType !== type) {
typeSize = Runtime.getNativeTypeSize(type);
previousType = type;
}
i += typeSize;
}
return ret;
}
Module["allocate"] = allocate;
// Allocate memory during any stage of startup - static memory early on, dynamic memory later, malloc when ready
function getMemory(size) {
if (!staticSealed) return Runtime.staticAlloc(size);
if (!runtimeInitialized) return Runtime.dynamicAlloc(size);
return _malloc(size);
}
Module["getMemory"] = getMemory;
/** @type {function(number, number=)} */
function Pointer_stringify(ptr, length) {
if (length === 0 || !ptr) return '';
// TODO: use TextDecoder
// Find the length, and check for UTF while doing so
var hasUtf = 0;
var t;
var i = 0;
while (1) {
assert(ptr + i < TOTAL_MEMORY);
t = HEAPU8[(((ptr)+(i))>>0)];
hasUtf |= t;
if (t == 0 && !length) break;
i++;
if (length && i == length) break;
}
if (!length) length = i;
var ret = '';
if (hasUtf < 128) {
var MAX_CHUNK = 1024; // split up into chunks, because .apply on a huge string can overflow the stack
var curr;
while (length > 0) {
curr = String.fromCharCode.apply(String, HEAPU8.subarray(ptr, ptr + Math.min(length, MAX_CHUNK)));
ret = ret ? ret + curr : curr;
ptr += MAX_CHUNK;
length -= MAX_CHUNK;
}
return ret;
}
return Module['UTF8ToString'](ptr);
}
Module["Pointer_stringify"] = Pointer_stringify;
// Given a pointer 'ptr' to a null-terminated ASCII-encoded string in the emscripten HEAP, returns
// a copy of that string as a Javascript String object.
function AsciiToString(ptr) {
var str = '';
while (1) {
var ch = HEAP8[((ptr++)>>0)];
if (!ch) return str;
str += String.fromCharCode(ch);
}
}
Module["AsciiToString"] = AsciiToString;
// Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr',
// null-terminated and encoded in ASCII form. The copy will require at most str.length+1 bytes of space in the HEAP.
function stringToAscii(str, outPtr) {
return writeAsciiToMemory(str, outPtr, false);
}
Module["stringToAscii"] = stringToAscii;
// Given a pointer 'ptr' to a null-terminated UTF8-encoded string in the given array that contains uint8 values, returns
// a copy of that string as a Javascript String object.
var UTF8Decoder = typeof TextDecoder !== 'undefined' ? new TextDecoder('utf8') : undefined;
function UTF8ArrayToString(u8Array, idx) {
var endPtr = idx;
// TextDecoder needs to know the byte length in advance, it doesn't stop on null terminator by itself.
// Also, use the length info to avoid running tiny strings through TextDecoder, since .subarray() allocates garbage.
while (u8Array[endPtr]) ++endPtr;
if (endPtr - idx > 16 && u8Array.subarray && UTF8Decoder) {
return UTF8Decoder.decode(u8Array.subarray(idx, endPtr));
} else {
var u0, u1, u2, u3, u4, u5;
var str = '';
while (1) {
// For UTF8 byte structure, see http://en.wikipedia.org/wiki/UTF-8#Description and https://www.ietf.org/rfc/rfc2279.txt and https://tools.ietf.org/html/rfc3629
u0 = u8Array[idx++];
if (!u0) return str;
if (!(u0 & 0x80)) { str += String.fromCharCode(u0); continue; }
u1 = u8Array[idx++] & 63;
if ((u0 & 0xE0) == 0xC0) { str += String.fromCharCode(((u0 & 31) << 6) | u1); continue; }
u2 = u8Array[idx++] & 63;
if ((u0 & 0xF0) == 0xE0) {
u0 = ((u0 & 15) << 12) | (u1 << 6) | u2;
} else {
u3 = u8Array[idx++] & 63;
if ((u0 & 0xF8) == 0xF0) {
u0 = ((u0 & 7) << 18) | (u1 << 12) | (u2 << 6) | u3;
} else {
u4 = u8Array[idx++] & 63;
if ((u0 & 0xFC) == 0xF8) {
u0 = ((u0 & 3) << 24) | (u1 << 18) | (u2 << 12) | (u3 << 6) | u4;
} else {
u5 = u8Array[idx++] & 63;
u0 = ((u0 & 1) << 30) | (u1 << 24) | (u2 << 18) | (u3 << 12) | (u4 << 6) | u5;
}
}
}
if (u0 < 0x10000) {
str += String.fromCharCode(u0);
} else {
var ch = u0 - 0x10000;
str += String.fromCharCode(0xD800 | (ch >> 10), 0xDC00 | (ch & 0x3FF));
}
}
}
}
Module["UTF8ArrayToString"] = UTF8ArrayToString;
// Given a pointer 'ptr' to a null-terminated UTF8-encoded string in the emscripten HEAP, returns
// a copy of that string as a Javascript String object.
function UTF8ToString(ptr) {
return UTF8ArrayToString(HEAPU8,ptr);
}
Module["UTF8ToString"] = UTF8ToString;
// Copies the given Javascript String object 'str' to the given byte array at address 'outIdx',
// encoded in UTF8 form and null-terminated. The copy will require at most str.length*4+1 bytes of space in the HEAP.
// Use the function lengthBytesUTF8 to compute the exact number of bytes (excluding null terminator) that this function will write.
// Parameters:
// str: the Javascript string to copy.
// outU8Array: the array to copy to. Each index in this array is assumed to be one 8-byte element.
// outIdx: The starting offset in the array to begin the copying.
// maxBytesToWrite: The maximum number of bytes this function can write to the array. This count should include the null
// terminator, i.e. if maxBytesToWrite=1, only the null terminator will be written and nothing else.
// maxBytesToWrite=0 does not write any bytes to the output, not even the null terminator.
// Returns the number of bytes written, EXCLUDING the null terminator.
function stringToUTF8Array(str, outU8Array, outIdx, maxBytesToWrite) {
if (!(maxBytesToWrite > 0)) // Parameter maxBytesToWrite is not optional. Negative values, 0, null, undefined and false each don't write out any bytes.
return 0;
var startIdx = outIdx;
var endIdx = outIdx + maxBytesToWrite - 1; // -1 for string null terminator.
for (var i = 0; i < str.length; ++i) {
// Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code unit, not a Unicode code point of the character! So decode UTF16->UTF32->UTF8.
// See http://unicode.org/faq/utf_bom.html#utf16-3
// For UTF8 byte structure, see http://en.wikipedia.org/wiki/UTF-8#Description and https://www.ietf.org/rfc/rfc2279.txt and https://tools.ietf.org/html/rfc3629
var u = str.charCodeAt(i); // possibly a lead surrogate
if (u >= 0xD800 && u <= 0xDFFF) u = 0x10000 + ((u & 0x3FF) << 10) | (str.charCodeAt(++i) & 0x3FF);
if (u <= 0x7F) {
if (outIdx >= endIdx) break;
outU8Array[outIdx++] = u;
} else if (u <= 0x7FF) {
if (outIdx + 1 >= endIdx) break;
outU8Array[outIdx++] = 0xC0 | (u >> 6);
outU8Array[outIdx++] = 0x80 | (u & 63);
} else if (u <= 0xFFFF) {
if (outIdx + 2 >= endIdx) break;
outU8Array[outIdx++] = 0xE0 | (u >> 12);
outU8Array[outIdx++] = 0x80 | ((u >> 6) & 63);
outU8Array[outIdx++] = 0x80 | (u & 63);
} else if (u <= 0x1FFFFF) {
if (outIdx + 3 >= endIdx) break;
outU8Array[outIdx++] = 0xF0 | (u >> 18);
outU8Array[outIdx++] = 0x80 | ((u >> 12) & 63);
outU8Array[outIdx++] = 0x80 | ((u >> 6) & 63);
outU8Array[outIdx++] = 0x80 | (u & 63);
} else if (u <= 0x3FFFFFF) {
if (outIdx + 4 >= endIdx) break;
outU8Array[outIdx++] = 0xF8 | (u >> 24);
outU8Array[outIdx++] = 0x80 | ((u >> 18) & 63);
outU8Array[outIdx++] = 0x80 | ((u >> 12) & 63);
outU8Array[outIdx++] = 0x80 | ((u >> 6) & 63);
outU8Array[outIdx++] = 0x80 | (u & 63);
} else {
if (outIdx + 5 >= endIdx) break;
outU8Array[outIdx++] = 0xFC | (u >> 30);
outU8Array[outIdx++] = 0x80 | ((u >> 24) & 63);
outU8Array[outIdx++] = 0x80 | ((u >> 18) & 63);
outU8Array[outIdx++] = 0x80 | ((u >> 12) & 63);
outU8Array[outIdx++] = 0x80 | ((u >> 6) & 63);
outU8Array[outIdx++] = 0x80 | (u & 63);
}
}
// Null-terminate the pointer to the buffer.
outU8Array[outIdx] = 0;
return outIdx - startIdx;
}
Module["stringToUTF8Array"] = stringToUTF8Array;
// Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr',
// null-terminated and encoded in UTF8 form. The copy will require at most str.length*4+1 bytes of space in the HEAP.
// Use the function lengthBytesUTF8 to compute the exact number of bytes (excluding null terminator) that this function will write.
// Returns the number of bytes written, EXCLUDING the null terminator.
function stringToUTF8(str, outPtr, maxBytesToWrite) {
assert(typeof maxBytesToWrite == 'number', 'stringToUTF8(str, outPtr, maxBytesToWrite) is missing the third parameter that specifies the length of the output buffer!');
return stringToUTF8Array(str, HEAPU8,outPtr, maxBytesToWrite);
}
Module["stringToUTF8"] = stringToUTF8;
// Returns the number of bytes the given Javascript string takes if encoded as a UTF8 byte array, EXCLUDING the null terminator byte.
function lengthBytesUTF8(str) {
var len = 0;
for (var i = 0; i < str.length; ++i) {
// Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code unit, not a Unicode code point of the character! So decode UTF16->UTF32->UTF8.
// See http://unicode.org/faq/utf_bom.html#utf16-3
var u = str.charCodeAt(i); // possibly a lead surrogate
if (u >= 0xD800 && u <= 0xDFFF) u = 0x10000 + ((u & 0x3FF) << 10) | (str.charCodeAt(++i) & 0x3FF);
if (u <= 0x7F) {
++len;
} else if (u <= 0x7FF) {
len += 2;
} else if (u <= 0xFFFF) {
len += 3;
} else if (u <= 0x1FFFFF) {
len += 4;
} else if (u <= 0x3FFFFFF) {
len += 5;
} else {
len += 6;
}
}
return len;
}
Module["lengthBytesUTF8"] = lengthBytesUTF8;
// Given a pointer 'ptr' to a null-terminated UTF16LE-encoded string in the emscripten HEAP, returns
// a copy of that string as a Javascript String object.
var UTF16Decoder = typeof TextDecoder !== 'undefined' ? new TextDecoder('utf-16le') : undefined;
function UTF16ToString(ptr) {
assert(ptr % 2 == 0, 'Pointer passed to UTF16ToString must be aligned to two bytes!');
var endPtr = ptr;
// TextDecoder needs to know the byte length in advance, it doesn't stop on null terminator by itself.
// Also, use the length info to avoid running tiny strings through TextDecoder, since .subarray() allocates garbage.
var idx = endPtr >> 1;
while (HEAP16[idx]) ++idx;
endPtr = idx << 1;
if (endPtr - ptr > 32 && UTF16Decoder) {
return UTF16Decoder.decode(HEAPU8.subarray(ptr, endPtr));
} else {
var i = 0;
var str = '';
while (1) {
var codeUnit = HEAP16[(((ptr)+(i*2))>>1)];
if (codeUnit == 0) return str;
++i;
// fromCharCode constructs a character from a UTF-16 code unit, so we can pass the UTF16 string right through.
str += String.fromCharCode(codeUnit);
}
}
}
// Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr',
// null-terminated and encoded in UTF16 form. The copy will require at most str.length*4+2 bytes of space in the HEAP.
// Use the function lengthBytesUTF16() to compute the exact number of bytes (excluding null terminator) that this function will write.
// Parameters:
// str: the Javascript string to copy.
// outPtr: Byte address in Emscripten HEAP where to write the string to.
// maxBytesToWrite: The maximum number of bytes this function can write to the array. This count should include the null
// terminator, i.e. if maxBytesToWrite=2, only the null terminator will be written and nothing else.
// maxBytesToWrite<2 does not write any bytes to the output, not even the null terminator.
// Returns the number of bytes written, EXCLUDING the null terminator.
function stringToUTF16(str, outPtr, maxBytesToWrite) {
assert(outPtr % 2 == 0, 'Pointer passed to stringToUTF16 must be aligned to two bytes!');
assert(typeof maxBytesToWrite == 'number', 'stringToUTF16(str, outPtr, maxBytesToWrite) is missing the third parameter that specifies the length of the output buffer!');
// Backwards compatibility: if max bytes is not specified, assume unsafe unbounded write is allowed.
if (maxBytesToWrite === undefined) {
maxBytesToWrite = 0x7FFFFFFF;
}
if (maxBytesToWrite < 2) return 0;
maxBytesToWrite -= 2; // Null terminator.
var startPtr = outPtr;
var numCharsToWrite = (maxBytesToWrite < str.length*2) ? (maxBytesToWrite / 2) : str.length;
for (var i = 0; i < numCharsToWrite; ++i) {
// charCodeAt returns a UTF-16 encoded code unit, so it can be directly written to the HEAP.
var codeUnit = str.charCodeAt(i); // possibly a lead surrogate
HEAP16[((outPtr)>>1)]=codeUnit;
outPtr += 2;
}
// Null-terminate the pointer to the HEAP.
HEAP16[((outPtr)>>1)]=0;
return outPtr - startPtr;
}
// Returns the number of bytes the given Javascript string takes if encoded as a UTF16 byte array, EXCLUDING the null terminator byte.
function lengthBytesUTF16(str) {
return str.length*2;
}
function UTF32ToString(ptr) {
assert(ptr % 4 == 0, 'Pointer passed to UTF32ToString must be aligned to four bytes!');
var i = 0;
var str = '';
while (1) {
var utf32 = HEAP32[(((ptr)+(i*4))>>2)];
if (utf32 == 0)
return str;
++i;
// Gotcha: fromCharCode constructs a character from a UTF-16 encoded code (pair), not from a Unicode code point! So encode the code point to UTF-16 for constructing.
// See http://unicode.org/faq/utf_bom.html#utf16-3
if (utf32 >= 0x10000) {
var ch = utf32 - 0x10000;
str += String.fromCharCode(0xD800 | (ch >> 10), 0xDC00 | (ch & 0x3FF));
} else {
str += String.fromCharCode(utf32);
}
}
}
// Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr',
// null-terminated and encoded in UTF32 form. The copy will require at most str.length*4+4 bytes of space in the HEAP.
// Use the function lengthBytesUTF32() to compute the exact number of bytes (excluding null terminator) that this function will write.
// Parameters:
// str: the Javascript string to copy.
// outPtr: Byte address in Emscripten HEAP where to write the string to.
// maxBytesToWrite: The maximum number of bytes this function can write to the array. This count should include the null
// terminator, i.e. if maxBytesToWrite=4, only the null terminator will be written and nothing else.
// maxBytesToWrite<4 does not write any bytes to the output, not even the null terminator.
// Returns the number of bytes written, EXCLUDING the null terminator.
function stringToUTF32(str, outPtr, maxBytesToWrite) {
assert(outPtr % 4 == 0, 'Poin