converse-mcp-server
Version:
Converse MCP Server - Converse with other LLMs with chat and consensus tools
871 lines (757 loc) • 29.8 kB
JavaScript
/**
* Chat Tool
*
* Single-provider conversational AI with context and continuation support.
* Handles context processing, provider calls, and state management.
*/
import { createToolResponse, createToolError } from './index.js';
import { processUnifiedContext, createFileContext } from '../utils/contextProcessor.js';
import { generateContinuationId, addMessageToHistory } from '../continuationStore.js';
import { debugLog, debugError } from '../utils/console.js';
import { createLogger } from '../utils/logger.js';
import { CHAT_PROMPT } from '../systemPrompts.js';
import { applyTokenLimit, getTokenLimit } from '../utils/tokenLimiter.js';
import { validateAllPaths } from '../utils/fileValidator.js';
import { SummarizationService } from '../services/summarizationService.js';
const logger = createLogger('chat');
/**
* Chat tool implementation
* @param {object} args - Tool arguments
* @param {object} dependencies - Injected dependencies (config, providers, continuationStore)
* @returns {object} MCP tool response
*/
export async function chatTool(args, dependencies) {
try {
const { config, providers, continuationStore, contextProcessor, jobRunner, providerStreamNormalizer } = dependencies;
// Validate required arguments
if (!args.prompt || typeof args.prompt !== 'string') {
return createToolError('Prompt is required and must be a string');
}
// Extract and validate arguments
const {
prompt,
model = 'auto',
files = [],
continuation_id,
temperature = 0.5,
use_websearch = false,
images = [],
reasoning_effort = 'medium',
verbosity = 'medium',
async = false
} = args;
// Handle async execution mode
if (async) {
// Validate async dependencies are available
if (!jobRunner || !providerStreamNormalizer) {
return createToolError('Async execution not available - missing async dependencies');
}
// Generate or use existing continuation ID for the conversation
const conversationContinuationId = continuation_id || generateContinuationId();
// Get provider and model info for the job
const providerName = mapModelToProvider(args.model || 'auto', providers);
const resolvedModel = providers[providerName]?.resolveModel?.(args.model) || args.model || 'auto';
// Generate title early for initial response
const summarizationService = new SummarizationService(providers, config);
let title = null;
try {
title = await summarizationService.generateTitle(prompt);
debugLog(`Chat: Generated title for initial response - "${title}"`);
} catch (error) {
debugError('Chat: Failed to generate title for initial response', error);
title = prompt.substring(0, 50);
}
try {
// Submit background job using continuation_id as the job identifier
const jobId = await jobRunner.submit(
{
tool: 'chat',
sessionId: 'local-user', // Use standard session ID
options: {
...args,
jobId: conversationContinuationId, // Use continuation_id as job ID
continuation_id: conversationContinuationId, // Pass the conversation continuation ID
provider: providerName, // Add provider info for status display
model: resolvedModel, // Add resolved model info for status display
title // Pass the generated title
}
},
async (context) => {
// Execute chat in background using stream normalizer
return await executeChatWithStreaming(
args,
{
...dependencies,
continuationId: conversationContinuationId,
title // Pass title to execution context
},
context
);
}
);
// Format initial response like check_status output
const startTime = new Date().toLocaleString('en-GB', {
day: '2-digit',
month: '2-digit',
year: 'numeric',
hour: '2-digit',
minute: '2-digit',
second: '2-digit',
hour12: false
}).replace(',', '');
const statusLine = `⏳ SUBMITTED | CHAT | ${conversationContinuationId} | 1/1 | Started: ${startTime} | "${title || 'Processing...'}" | ${providerName}/${resolvedModel}`;
// Return formatted response with status line and continuation_id
return createToolResponse({
content: `${statusLine}\ncontinuation_id: ${conversationContinuationId}`,
continuation: {
id: conversationContinuationId, // Use continuation_id as the primary ID
status: 'processing'
},
async_execution: true
});
} catch (error) {
logger.error('Failed to submit async chat job', { error });
return createToolError(`Async execution failed: ${error.message}`);
}
}
let conversationHistory = [];
let continuationId = continuation_id;
// Load existing conversation if continuation_id provided
if (continuationId) {
try {
const existingState = await continuationStore.get(continuationId);
if (existingState) {
conversationHistory = existingState.messages || [];
} else {
// Invalid continuation ID - start fresh with new ID
continuationId = generateContinuationId();
}
} catch (error) {
logger.error('Error loading conversation', { error });
// Continue with fresh conversation on error
continuationId = generateContinuationId();
}
} else {
// Generate new continuation ID for new conversation
continuationId = generateContinuationId();
}
// Validate file paths before processing
if (files.length > 0 || images.length > 0) {
const validation = await validateAllPaths({ files, images }, { clientCwd: config.server?.client_cwd });
if (!validation.valid) {
logger.error('File validation failed', { errors: validation.errors });
return validation.errorResponse;
}
}
// Process context (files, images, web search)
let contextMessage = null;
if (files.length > 0 || images.length > 0 || use_websearch) {
try {
const contextRequest = {
files: Array.isArray(files) ? files : [],
images: Array.isArray(images) ? images : [],
webSearch: use_websearch ? prompt : null
};
const contextResult = await contextProcessor.processUnifiedContext(contextRequest, {
enforceSecurityCheck: false, // Allow files from any location
skipSecurityCheck: true, // Legacy flag for backward compatibility
clientCwd: config.server?.client_cwd // Use auto-detected client working directory
});
// Create context message from files and images
const allProcessedFiles = [...contextResult.files, ...contextResult.images];
if (allProcessedFiles.length > 0) {
contextMessage = createFileContext(allProcessedFiles, {
includeMetadata: true,
includeErrors: true
});
}
// Add web search results if available (placeholder for now)
if (contextResult.webSearch && !contextResult.webSearch.placeholder) {
// Future implementation: add web search results to context
logger.debug('Web search results available but not yet implemented');
}
} catch (error) {
logger.error('Error processing context', { error });
// Continue without context if processing fails
}
}
// Build message array for provider
const messages = [];
// Add system prompt only if not already in conversation history
if (conversationHistory.length === 0 || conversationHistory[0].role !== 'system') {
messages.push({
role: 'system',
content: CHAT_PROMPT
});
}
// Add conversation history
messages.push(...conversationHistory);
// Add user prompt with context
const userMessage = {
role: 'user',
content: prompt // default to simple string content
};
// If we have context (files/images), create complex content array
if (contextMessage && contextMessage.content) {
// Create complex content array
userMessage.content = [
...contextMessage.content, // Include all file/image parts
{ type: 'text', text: prompt } // Add the user prompt as text
];
}
messages.push(userMessage);
// Select provider
let selectedProvider;
let providerName;
if (model === 'auto') {
// Auto-select first available provider
const availableProviders = Object.keys(providers).filter(name => {
const provider = providers[name];
return provider && provider.isAvailable && provider.isAvailable(config);
});
if (availableProviders.length === 0) {
return createToolError('No providers available. Please configure at least one API key.');
}
providerName = availableProviders[0];
selectedProvider = providers[providerName];
} else {
// Use specified provider/model
// Try to map model to provider
providerName = mapModelToProvider(model, providers);
selectedProvider = providers[providerName];
if (!selectedProvider) {
return createToolError(`Provider not found for model: ${model}`);
}
if (!selectedProvider.isAvailable(config)) {
return createToolError(`Provider ${providerName} is not available. Check API key configuration.`);
}
}
// Resolve model name and prepare provider options
const resolvedModel = resolveAutoModel(model, providerName);
const providerOptions = {
model: resolvedModel,
temperature,
reasoning_effort,
verbosity,
use_websearch,
config
};
// Call provider
let response;
const startTime = Date.now();
try {
response = await selectedProvider.invoke(messages, providerOptions);
} catch (error) {
logger.error('Provider error', { error, data: { provider: providerName } });
return createToolError(`Provider error: ${error.message}`);
}
const executionTime = (Date.now() - startTime) / 1000; // Convert to seconds
// Validate response
if (!response || !response.content) {
return createToolError('Provider returned invalid response');
}
// Add assistant response to conversation history
const assistantMessage = {
role: 'assistant',
content: response.content
};
const updatedMessages = [...messages, assistantMessage];
// Save conversation state
try {
const conversationState = {
messages: updatedMessages,
provider: providerName,
model,
lastUpdated: Date.now()
};
await continuationStore.set(continuationId, conversationState);
} catch (error) {
logger.error('Error saving conversation', { error });
// Continue even if save fails
}
// Create unified status line (similar to async status display)
const statusLine = config.environment?.nodeEnv !== 'test'
? `✅ COMPLETED | CHAT | ${continuationId} | ${executionTime.toFixed(1)}s elapsed | ${providerName}/${resolvedModel}\n`
: '';
// Always include continuation_id line for clarity
const continuationIdLine = `continuation_id: ${continuationId}\n\n`;
const result = {
content: statusLine + continuationIdLine + response.content,
continuation: {
id: continuationId,
provider: providerName,
model,
messageCount: updatedMessages.filter(msg => msg.role !== 'system').length
}
};
// Add metadata if available
if (response.metadata) {
result.metadata = response.metadata;
}
// Apply token limiting to the final response
const tokenLimit = getTokenLimit(config);
const resultStr = JSON.stringify(result, null, 2);
const limitedResult = applyTokenLimit(resultStr, tokenLimit);
// Parse the limited result back to object format to preserve structure
let finalResult;
try {
finalResult = JSON.parse(limitedResult.content);
} catch (e) {
// Fallback if parsing fails - return original result
finalResult = result;
}
return createToolResponse(finalResult);
} catch (error) {
logger.error('Chat tool error', { error });
return createToolError('Chat tool failed', error);
}
}
/**
* Map model name to provider name
* @param {string} model - Model name
* @returns {string} Provider name
*/
/**
* Resolve "auto" model to default model for the provider
*/
function resolveAutoModel(model, providerName) {
if (model.toLowerCase() !== 'auto') {
return model;
}
const defaults = {
'openai': 'gpt-5',
'xai': 'grok-4-0709',
'google': 'gemini-2.5-pro',
'anthropic': 'claude-sonnet-4-20250514',
'mistral': 'magistral-medium-2506',
'deepseek': 'deepseek-reasoner',
'openrouter': 'qwen/qwen3-coder'
};
return defaults[providerName] || 'gpt-5';
}
export function mapModelToProvider(model, providers) {
const modelLower = model.toLowerCase();
// Handle "auto" - default to OpenAI
if (modelLower === 'auto') {
return 'openai';
}
// Check OpenRouter-specific patterns first
if (modelLower === 'openrouter auto' || modelLower === 'auto router' ||
modelLower === 'auto-router' || modelLower === 'openrouter-auto') {
return 'openrouter';
}
// If model contains "/", check if native provider supports it
if (modelLower.includes('/')) {
// Check each provider to see if they have this exact model
for (const [providerName, provider] of Object.entries(providers)) {
if (provider && provider.getModelConfig) {
const modelConfig = provider.getModelConfig(model);
if (modelConfig && !modelConfig.isDynamic && !modelConfig.needsApiUpdate) {
// Model exists in this provider's static list
return providerName;
}
}
}
// No native provider has this model, route to OpenRouter
return 'openrouter';
}
// For non-slash models, use keyword matching as before
// OpenAI models
if (modelLower.includes('gpt') || modelLower.includes('o1') ||
modelLower.includes('o3') || modelLower.includes('o4')) {
return 'openai';
}
// XAI models
if (modelLower.includes('grok')) {
return 'xai';
}
// Google models
if (modelLower.includes('gemini') || modelLower.includes('flash') ||
modelLower.includes('pro') || modelLower === 'google') {
return 'google';
}
// Anthropic models
if (modelLower.includes('claude') || modelLower.includes('opus') ||
modelLower.includes('sonnet') || modelLower.includes('haiku')) {
return 'anthropic';
}
// Mistral models
if (modelLower.includes('mistral') || modelLower.includes('magistral')) {
return 'mistral';
}
// DeepSeek models
if (modelLower.includes('deepseek') || modelLower === 'reasoner' ||
modelLower === 'r1' || modelLower === 'chat') {
return 'deepseek';
}
// OpenRouter models (specific model patterns)
if (modelLower.includes('qwen') || modelLower.includes('kimi') ||
modelLower.includes('moonshot') || modelLower === 'k2') {
return 'openrouter';
}
// Default fallback
return 'openai';
}
/**
* Execute chat with streaming normalization for async execution
* @param {object} args - Original chat arguments
* @param {object} dependencies - Dependencies with continuationId
* @param {object} context - Job execution context
* @returns {Promise<object>} Complete chat result
*/
async function executeChatWithStreaming(args, dependencies, context) {
const {
config,
providers,
continuationStore,
contextProcessor,
providerStreamNormalizer,
continuationId,
title: passedTitle // Title passed from initial submission
} = dependencies;
const {
prompt,
model = 'auto',
files = [],
temperature = 0.5,
use_websearch = false,
images = [],
reasoning_effort = 'medium',
verbosity = 'medium'
} = args;
// Initialize SummarizationService
const summarizationService = new SummarizationService(providers, config);
// Use passed title or generate if not provided
let title = passedTitle;
if (!title) {
try {
title = await summarizationService.generateTitle(prompt);
debugLog(`Chat: Generated title - "${title}"`);
} catch (error) {
debugError('Chat: Failed to generate title', error);
// Continue without title if generation fails
}
} else {
debugLog(`Chat: Using passed title - "${title}"`);
}
let conversationHistory = [];
// Load existing conversation if continuation_id provided
if (continuationId) {
try {
const existingState = await continuationStore.get(continuationId);
if (existingState) {
conversationHistory = existingState.messages || [];
}
} catch (error) {
logger.error('Error loading conversation', { error });
// Continue with fresh conversation on error
}
}
// Validate file paths before processing
if (files.length > 0 || images.length > 0) {
const validation = await validateAllPaths({ files, images }, { clientCwd: config.server?.client_cwd });
if (!validation.valid) {
logger.error('File validation failed', { errors: validation.errors });
throw new Error(`File validation failed: ${validation.errors.join(', ')}`);
}
}
// Process context (files, images, web search)
let contextMessage = null;
if (files.length > 0 || images.length > 0 || use_websearch) {
try {
const contextRequest = {
files: Array.isArray(files) ? files : [],
images: Array.isArray(images) ? images : [],
webSearch: use_websearch ? prompt : null
};
const contextResult = await contextProcessor.processUnifiedContext(contextRequest, {
enforceSecurityCheck: false,
skipSecurityCheck: true,
clientCwd: config.server?.client_cwd
});
// Create context message from files and images
const allProcessedFiles = [...contextResult.files, ...contextResult.images];
if (allProcessedFiles.length > 0) {
contextMessage = createFileContext(allProcessedFiles, {
includeMetadata: true,
includeErrors: true
});
}
} catch (error) {
logger.error('Error processing context', { error });
// Continue without context if processing fails
}
}
// Build message array for provider
const messages = [];
// Add system prompt only if not already in conversation history
if (conversationHistory.length === 0 || conversationHistory[0].role !== 'system') {
messages.push({
role: 'system',
content: CHAT_PROMPT
});
}
// Add conversation history
messages.push(...conversationHistory);
// Add user prompt with context
const userMessage = {
role: 'user',
content: prompt
};
// If we have context (files/images), create complex content array
if (contextMessage && contextMessage.content) {
userMessage.content = [
...contextMessage.content,
{ type: 'text', text: prompt }
];
}
messages.push(userMessage);
// Select provider
let selectedProvider;
let providerName;
if (model === 'auto') {
// Auto-select first available provider
const availableProviders = Object.keys(providers).filter(name => {
const provider = providers[name];
return provider && provider.isAvailable && provider.isAvailable(config);
});
if (availableProviders.length === 0) {
throw new Error('No providers available. Please configure at least one API key.');
}
providerName = availableProviders[0];
selectedProvider = providers[providerName];
} else {
// Use specified provider/model
providerName = mapModelToProvider(model, providers);
selectedProvider = providers[providerName];
if (!selectedProvider) {
throw new Error(`Provider not found for model: ${model}`);
}
if (!selectedProvider.isAvailable(config)) {
throw new Error(`Provider ${providerName} is not available. Check API key configuration.`);
}
}
// Resolve model name and prepare provider options
const resolvedModel = resolveAutoModel(model, providerName);
const providerOptions = {
model: resolvedModel,
temperature,
reasoning_effort,
verbosity,
use_websearch,
config
};
// For streaming, add the stream flag and signal separately
const streamingOptions = {
...providerOptions,
stream: true,
signal: context?.signal // Pass AbortSignal for cancellation support
};
// Check if provider supports streaming (by checking if invoke can return a stream)
let response;
const startTime = Date.now();
// Always use streaming for async execution in background
if (context?.jobId) {
// Use streaming with normalization
debugLog(`Chat: Using streaming for provider ${providerName}`);
const stream = await selectedProvider.invoke(messages, streamingOptions);
const normalizedStream = providerStreamNormalizer.normalize(providerName, stream, {
model: resolvedModel,
requestId: context.jobId
});
// Process normalized stream and build final response
let accumulatedContent = '';
let finalUsage = null;
let finalMetadata = {};
for await (const event of normalizedStream) {
// Check for cancellation
if (context.signal.aborted) {
throw new Error('Chat execution was cancelled');
}
switch (event.type) {
case 'start':
// Update job with streaming started status, provider info, and title
await context.updateJob({
status: 'running',
provider: providerName,
model: resolvedModel,
title: title || undefined, // Include title if generated
progress: { phase: 'streaming_started', provider: providerName, model: resolvedModel }
});
break;
case 'delta':
accumulatedContent += event.data.textDelta;
// Update job with progress and full accumulated content
await context.updateJob({
accumulated_content: accumulatedContent, // Store full content
progress: {
phase: 'streaming',
provider: providerName,
model: resolvedModel,
content_length: accumulatedContent.length
}
});
break;
case 'reasoning_summary':
// Update job with reasoning summary
debugLog(`[Chat] *** UPDATING JOB WITH REASONING: "${event.data.content?.substring(0, 100)}..."`);
await context.updateJob({
reasoning_summary: event.data.content
});
break;
case 'usage':
finalUsage = event.data.usage;
break;
case 'end':
accumulatedContent = event.data.content || accumulatedContent;
finalUsage = event.data.usage || finalUsage;
finalMetadata = event.data.metadata || finalMetadata;
break;
case 'error':
throw new Error(`Streaming error: ${event.data.error.message}`);
}
}
response = {
content: accumulatedContent,
metadata: {
...finalMetadata,
usage: finalUsage,
streaming: true
}
};
} else {
// Fall back to regular invoke
debugLog(`Chat: Using regular invoke for provider ${providerName}`);
response = await selectedProvider.invoke(messages, providerOptions);
}
const executionTime = (Date.now() - startTime) / 1000;
// Validate response
if (!response || !response.content) {
throw new Error('Provider returned invalid response');
}
// Store reasoning summary from OpenAI if available
if (response.metadata?.usage?.reasoning_summary && context && context.updateJob) {
try {
await context.updateJob({
reasoning_summary: response.metadata.usage.reasoning_summary
});
debugLog(`Chat: Stored reasoning summary`);
} catch (error) {
debugError('Chat: Failed to store reasoning summary', error);
}
}
// Generate final summary for responses longer than 100 characters (non-blocking)
let finalSummary = null;
if (response.content && response.content.length > 100) {
try {
finalSummary = await summarizationService.generateFinalSummary(response.content);
debugLog(`Chat: Generated final summary - "${finalSummary}"`);
// Store final summary in job
if (finalSummary && context && context.updateJob) {
await context.updateJob({
final_summary: finalSummary
});
}
} catch (error) {
debugError('Chat: Failed to generate final summary', error);
// Continue without summary if generation fails
}
}
// Add assistant response to conversation history
const assistantMessage = {
role: 'assistant',
content: response.content
};
const updatedMessages = [...messages, assistantMessage];
// Save conversation state
try {
const conversationState = {
messages: updatedMessages,
provider: providerName,
model,
lastUpdated: Date.now()
};
await continuationStore.set(continuationId, conversationState);
} catch (error) {
logger.error('Error saving conversation', { error });
// Continue even if save fails
}
// Return complete result for job completion
return {
content: response.content,
title: title || undefined, // Include title if generated
summary: finalSummary || undefined, // Include summary if generated
continuation: {
id: continuationId,
provider: providerName,
model,
messageCount: updatedMessages.filter(msg => msg.role !== 'system').length
},
metadata: {
provider: providerName,
model: resolvedModel,
execution_time: executionTime,
async_execution: true,
...response.metadata
}
};
}
// Tool metadata
chatTool.description = 'GENERAL CHAT & COLLABORATIVE THINKING - For development assistance, brainstorming, and code analysis. Supports files, images, and conversation continuation. Use model: "auto" for automatic model selection.';
chatTool.inputSchema = {
type: 'object',
properties: {
prompt: {
type: 'string',
description: 'Your question or topic with relevant context. More detail enables better responses. Example: "How should I structure the authentication module for this Express.js API?"',
},
model: {
type: 'string',
description: 'AI model to use. Examples: "auto" (recommended), "gpt-5", "gemini-2.5-pro", "grok-4-0709". Defaults to auto-selection.',
},
files: {
type: 'array',
items: { type: 'string' },
description: 'File paths to include as context (absolute or relative paths). Example: ["C:\\Users\\username\\project\\src\\auth.js", "./config.json"]',
},
images: {
type: 'array',
items: { type: 'string' },
description: 'Image paths for visual context (absolute or relative paths, or base64 data). Example: ["C:\\Users\\username\\diagram.png", "./screenshot.jpg", "..."]',
},
continuation_id: {
type: 'string',
description: 'Continuation ID for persistent conversation. Example: "chat_1703123456789_abc123"',
},
temperature: {
type: 'number',
description: 'Response randomness (0.0-1.0). Examples: 0.2 (focused), 0.5 (balanced), 0.8 (creative). Default: 0.5',
minimum: 0.0,
maximum: 1.0,
default: 0.5
},
reasoning_effort: {
type: 'string',
enum: ['minimal', 'low', 'medium', 'high', 'max'],
description: 'Reasoning depth for thinking models. Examples: "minimal" (fastest, few reasoning tokens), "low" (light analysis), "medium" (balanced), "high" (complex analysis). Default: "medium"',
default: 'medium'
},
verbosity: {
type: 'string',
enum: ['low', 'medium', 'high'],
description: 'Output verbosity for GPT-5 models. Examples: "low" (concise answers), "medium" (balanced), "high" (thorough explanations). Default: "medium"',
default: 'medium'
},
use_websearch: {
type: 'boolean',
description: 'Enable web search for current information. Example: true for recent developments or up to date documentation. Default: false',
default: false
},
async: {
type: 'boolean',
description: 'Execute chat in background. When true, returns continuation_id immediately and processes request asynchronously. Default: false',
default: false
},
},
required: ['prompt'],
};