UNPKG

converse-mcp-server

Version:

Converse MCP Server - Converse with other LLMs with chat and consensus tools

871 lines (757 loc) 29.8 kB
/** * Chat Tool * * Single-provider conversational AI with context and continuation support. * Handles context processing, provider calls, and state management. */ import { createToolResponse, createToolError } from './index.js'; import { processUnifiedContext, createFileContext } from '../utils/contextProcessor.js'; import { generateContinuationId, addMessageToHistory } from '../continuationStore.js'; import { debugLog, debugError } from '../utils/console.js'; import { createLogger } from '../utils/logger.js'; import { CHAT_PROMPT } from '../systemPrompts.js'; import { applyTokenLimit, getTokenLimit } from '../utils/tokenLimiter.js'; import { validateAllPaths } from '../utils/fileValidator.js'; import { SummarizationService } from '../services/summarizationService.js'; const logger = createLogger('chat'); /** * Chat tool implementation * @param {object} args - Tool arguments * @param {object} dependencies - Injected dependencies (config, providers, continuationStore) * @returns {object} MCP tool response */ export async function chatTool(args, dependencies) { try { const { config, providers, continuationStore, contextProcessor, jobRunner, providerStreamNormalizer } = dependencies; // Validate required arguments if (!args.prompt || typeof args.prompt !== 'string') { return createToolError('Prompt is required and must be a string'); } // Extract and validate arguments const { prompt, model = 'auto', files = [], continuation_id, temperature = 0.5, use_websearch = false, images = [], reasoning_effort = 'medium', verbosity = 'medium', async = false } = args; // Handle async execution mode if (async) { // Validate async dependencies are available if (!jobRunner || !providerStreamNormalizer) { return createToolError('Async execution not available - missing async dependencies'); } // Generate or use existing continuation ID for the conversation const conversationContinuationId = continuation_id || generateContinuationId(); // Get provider and model info for the job const providerName = mapModelToProvider(args.model || 'auto', providers); const resolvedModel = providers[providerName]?.resolveModel?.(args.model) || args.model || 'auto'; // Generate title early for initial response const summarizationService = new SummarizationService(providers, config); let title = null; try { title = await summarizationService.generateTitle(prompt); debugLog(`Chat: Generated title for initial response - "${title}"`); } catch (error) { debugError('Chat: Failed to generate title for initial response', error); title = prompt.substring(0, 50); } try { // Submit background job using continuation_id as the job identifier const jobId = await jobRunner.submit( { tool: 'chat', sessionId: 'local-user', // Use standard session ID options: { ...args, jobId: conversationContinuationId, // Use continuation_id as job ID continuation_id: conversationContinuationId, // Pass the conversation continuation ID provider: providerName, // Add provider info for status display model: resolvedModel, // Add resolved model info for status display title // Pass the generated title } }, async (context) => { // Execute chat in background using stream normalizer return await executeChatWithStreaming( args, { ...dependencies, continuationId: conversationContinuationId, title // Pass title to execution context }, context ); } ); // Format initial response like check_status output const startTime = new Date().toLocaleString('en-GB', { day: '2-digit', month: '2-digit', year: 'numeric', hour: '2-digit', minute: '2-digit', second: '2-digit', hour12: false }).replace(',', ''); const statusLine = `⏳ SUBMITTED | CHAT | ${conversationContinuationId} | 1/1 | Started: ${startTime} | "${title || 'Processing...'}" | ${providerName}/${resolvedModel}`; // Return formatted response with status line and continuation_id return createToolResponse({ content: `${statusLine}\ncontinuation_id: ${conversationContinuationId}`, continuation: { id: conversationContinuationId, // Use continuation_id as the primary ID status: 'processing' }, async_execution: true }); } catch (error) { logger.error('Failed to submit async chat job', { error }); return createToolError(`Async execution failed: ${error.message}`); } } let conversationHistory = []; let continuationId = continuation_id; // Load existing conversation if continuation_id provided if (continuationId) { try { const existingState = await continuationStore.get(continuationId); if (existingState) { conversationHistory = existingState.messages || []; } else { // Invalid continuation ID - start fresh with new ID continuationId = generateContinuationId(); } } catch (error) { logger.error('Error loading conversation', { error }); // Continue with fresh conversation on error continuationId = generateContinuationId(); } } else { // Generate new continuation ID for new conversation continuationId = generateContinuationId(); } // Validate file paths before processing if (files.length > 0 || images.length > 0) { const validation = await validateAllPaths({ files, images }, { clientCwd: config.server?.client_cwd }); if (!validation.valid) { logger.error('File validation failed', { errors: validation.errors }); return validation.errorResponse; } } // Process context (files, images, web search) let contextMessage = null; if (files.length > 0 || images.length > 0 || use_websearch) { try { const contextRequest = { files: Array.isArray(files) ? files : [], images: Array.isArray(images) ? images : [], webSearch: use_websearch ? prompt : null }; const contextResult = await contextProcessor.processUnifiedContext(contextRequest, { enforceSecurityCheck: false, // Allow files from any location skipSecurityCheck: true, // Legacy flag for backward compatibility clientCwd: config.server?.client_cwd // Use auto-detected client working directory }); // Create context message from files and images const allProcessedFiles = [...contextResult.files, ...contextResult.images]; if (allProcessedFiles.length > 0) { contextMessage = createFileContext(allProcessedFiles, { includeMetadata: true, includeErrors: true }); } // Add web search results if available (placeholder for now) if (contextResult.webSearch && !contextResult.webSearch.placeholder) { // Future implementation: add web search results to context logger.debug('Web search results available but not yet implemented'); } } catch (error) { logger.error('Error processing context', { error }); // Continue without context if processing fails } } // Build message array for provider const messages = []; // Add system prompt only if not already in conversation history if (conversationHistory.length === 0 || conversationHistory[0].role !== 'system') { messages.push({ role: 'system', content: CHAT_PROMPT }); } // Add conversation history messages.push(...conversationHistory); // Add user prompt with context const userMessage = { role: 'user', content: prompt // default to simple string content }; // If we have context (files/images), create complex content array if (contextMessage && contextMessage.content) { // Create complex content array userMessage.content = [ ...contextMessage.content, // Include all file/image parts { type: 'text', text: prompt } // Add the user prompt as text ]; } messages.push(userMessage); // Select provider let selectedProvider; let providerName; if (model === 'auto') { // Auto-select first available provider const availableProviders = Object.keys(providers).filter(name => { const provider = providers[name]; return provider && provider.isAvailable && provider.isAvailable(config); }); if (availableProviders.length === 0) { return createToolError('No providers available. Please configure at least one API key.'); } providerName = availableProviders[0]; selectedProvider = providers[providerName]; } else { // Use specified provider/model // Try to map model to provider providerName = mapModelToProvider(model, providers); selectedProvider = providers[providerName]; if (!selectedProvider) { return createToolError(`Provider not found for model: ${model}`); } if (!selectedProvider.isAvailable(config)) { return createToolError(`Provider ${providerName} is not available. Check API key configuration.`); } } // Resolve model name and prepare provider options const resolvedModel = resolveAutoModel(model, providerName); const providerOptions = { model: resolvedModel, temperature, reasoning_effort, verbosity, use_websearch, config }; // Call provider let response; const startTime = Date.now(); try { response = await selectedProvider.invoke(messages, providerOptions); } catch (error) { logger.error('Provider error', { error, data: { provider: providerName } }); return createToolError(`Provider error: ${error.message}`); } const executionTime = (Date.now() - startTime) / 1000; // Convert to seconds // Validate response if (!response || !response.content) { return createToolError('Provider returned invalid response'); } // Add assistant response to conversation history const assistantMessage = { role: 'assistant', content: response.content }; const updatedMessages = [...messages, assistantMessage]; // Save conversation state try { const conversationState = { messages: updatedMessages, provider: providerName, model, lastUpdated: Date.now() }; await continuationStore.set(continuationId, conversationState); } catch (error) { logger.error('Error saving conversation', { error }); // Continue even if save fails } // Create unified status line (similar to async status display) const statusLine = config.environment?.nodeEnv !== 'test' ? `✅ COMPLETED | CHAT | ${continuationId} | ${executionTime.toFixed(1)}s elapsed | ${providerName}/${resolvedModel}\n` : ''; // Always include continuation_id line for clarity const continuationIdLine = `continuation_id: ${continuationId}\n\n`; const result = { content: statusLine + continuationIdLine + response.content, continuation: { id: continuationId, provider: providerName, model, messageCount: updatedMessages.filter(msg => msg.role !== 'system').length } }; // Add metadata if available if (response.metadata) { result.metadata = response.metadata; } // Apply token limiting to the final response const tokenLimit = getTokenLimit(config); const resultStr = JSON.stringify(result, null, 2); const limitedResult = applyTokenLimit(resultStr, tokenLimit); // Parse the limited result back to object format to preserve structure let finalResult; try { finalResult = JSON.parse(limitedResult.content); } catch (e) { // Fallback if parsing fails - return original result finalResult = result; } return createToolResponse(finalResult); } catch (error) { logger.error('Chat tool error', { error }); return createToolError('Chat tool failed', error); } } /** * Map model name to provider name * @param {string} model - Model name * @returns {string} Provider name */ /** * Resolve "auto" model to default model for the provider */ function resolveAutoModel(model, providerName) { if (model.toLowerCase() !== 'auto') { return model; } const defaults = { 'openai': 'gpt-5', 'xai': 'grok-4-0709', 'google': 'gemini-2.5-pro', 'anthropic': 'claude-sonnet-4-20250514', 'mistral': 'magistral-medium-2506', 'deepseek': 'deepseek-reasoner', 'openrouter': 'qwen/qwen3-coder' }; return defaults[providerName] || 'gpt-5'; } export function mapModelToProvider(model, providers) { const modelLower = model.toLowerCase(); // Handle "auto" - default to OpenAI if (modelLower === 'auto') { return 'openai'; } // Check OpenRouter-specific patterns first if (modelLower === 'openrouter auto' || modelLower === 'auto router' || modelLower === 'auto-router' || modelLower === 'openrouter-auto') { return 'openrouter'; } // If model contains "/", check if native provider supports it if (modelLower.includes('/')) { // Check each provider to see if they have this exact model for (const [providerName, provider] of Object.entries(providers)) { if (provider && provider.getModelConfig) { const modelConfig = provider.getModelConfig(model); if (modelConfig && !modelConfig.isDynamic && !modelConfig.needsApiUpdate) { // Model exists in this provider's static list return providerName; } } } // No native provider has this model, route to OpenRouter return 'openrouter'; } // For non-slash models, use keyword matching as before // OpenAI models if (modelLower.includes('gpt') || modelLower.includes('o1') || modelLower.includes('o3') || modelLower.includes('o4')) { return 'openai'; } // XAI models if (modelLower.includes('grok')) { return 'xai'; } // Google models if (modelLower.includes('gemini') || modelLower.includes('flash') || modelLower.includes('pro') || modelLower === 'google') { return 'google'; } // Anthropic models if (modelLower.includes('claude') || modelLower.includes('opus') || modelLower.includes('sonnet') || modelLower.includes('haiku')) { return 'anthropic'; } // Mistral models if (modelLower.includes('mistral') || modelLower.includes('magistral')) { return 'mistral'; } // DeepSeek models if (modelLower.includes('deepseek') || modelLower === 'reasoner' || modelLower === 'r1' || modelLower === 'chat') { return 'deepseek'; } // OpenRouter models (specific model patterns) if (modelLower.includes('qwen') || modelLower.includes('kimi') || modelLower.includes('moonshot') || modelLower === 'k2') { return 'openrouter'; } // Default fallback return 'openai'; } /** * Execute chat with streaming normalization for async execution * @param {object} args - Original chat arguments * @param {object} dependencies - Dependencies with continuationId * @param {object} context - Job execution context * @returns {Promise<object>} Complete chat result */ async function executeChatWithStreaming(args, dependencies, context) { const { config, providers, continuationStore, contextProcessor, providerStreamNormalizer, continuationId, title: passedTitle // Title passed from initial submission } = dependencies; const { prompt, model = 'auto', files = [], temperature = 0.5, use_websearch = false, images = [], reasoning_effort = 'medium', verbosity = 'medium' } = args; // Initialize SummarizationService const summarizationService = new SummarizationService(providers, config); // Use passed title or generate if not provided let title = passedTitle; if (!title) { try { title = await summarizationService.generateTitle(prompt); debugLog(`Chat: Generated title - "${title}"`); } catch (error) { debugError('Chat: Failed to generate title', error); // Continue without title if generation fails } } else { debugLog(`Chat: Using passed title - "${title}"`); } let conversationHistory = []; // Load existing conversation if continuation_id provided if (continuationId) { try { const existingState = await continuationStore.get(continuationId); if (existingState) { conversationHistory = existingState.messages || []; } } catch (error) { logger.error('Error loading conversation', { error }); // Continue with fresh conversation on error } } // Validate file paths before processing if (files.length > 0 || images.length > 0) { const validation = await validateAllPaths({ files, images }, { clientCwd: config.server?.client_cwd }); if (!validation.valid) { logger.error('File validation failed', { errors: validation.errors }); throw new Error(`File validation failed: ${validation.errors.join(', ')}`); } } // Process context (files, images, web search) let contextMessage = null; if (files.length > 0 || images.length > 0 || use_websearch) { try { const contextRequest = { files: Array.isArray(files) ? files : [], images: Array.isArray(images) ? images : [], webSearch: use_websearch ? prompt : null }; const contextResult = await contextProcessor.processUnifiedContext(contextRequest, { enforceSecurityCheck: false, skipSecurityCheck: true, clientCwd: config.server?.client_cwd }); // Create context message from files and images const allProcessedFiles = [...contextResult.files, ...contextResult.images]; if (allProcessedFiles.length > 0) { contextMessage = createFileContext(allProcessedFiles, { includeMetadata: true, includeErrors: true }); } } catch (error) { logger.error('Error processing context', { error }); // Continue without context if processing fails } } // Build message array for provider const messages = []; // Add system prompt only if not already in conversation history if (conversationHistory.length === 0 || conversationHistory[0].role !== 'system') { messages.push({ role: 'system', content: CHAT_PROMPT }); } // Add conversation history messages.push(...conversationHistory); // Add user prompt with context const userMessage = { role: 'user', content: prompt }; // If we have context (files/images), create complex content array if (contextMessage && contextMessage.content) { userMessage.content = [ ...contextMessage.content, { type: 'text', text: prompt } ]; } messages.push(userMessage); // Select provider let selectedProvider; let providerName; if (model === 'auto') { // Auto-select first available provider const availableProviders = Object.keys(providers).filter(name => { const provider = providers[name]; return provider && provider.isAvailable && provider.isAvailable(config); }); if (availableProviders.length === 0) { throw new Error('No providers available. Please configure at least one API key.'); } providerName = availableProviders[0]; selectedProvider = providers[providerName]; } else { // Use specified provider/model providerName = mapModelToProvider(model, providers); selectedProvider = providers[providerName]; if (!selectedProvider) { throw new Error(`Provider not found for model: ${model}`); } if (!selectedProvider.isAvailable(config)) { throw new Error(`Provider ${providerName} is not available. Check API key configuration.`); } } // Resolve model name and prepare provider options const resolvedModel = resolveAutoModel(model, providerName); const providerOptions = { model: resolvedModel, temperature, reasoning_effort, verbosity, use_websearch, config }; // For streaming, add the stream flag and signal separately const streamingOptions = { ...providerOptions, stream: true, signal: context?.signal // Pass AbortSignal for cancellation support }; // Check if provider supports streaming (by checking if invoke can return a stream) let response; const startTime = Date.now(); // Always use streaming for async execution in background if (context?.jobId) { // Use streaming with normalization debugLog(`Chat: Using streaming for provider ${providerName}`); const stream = await selectedProvider.invoke(messages, streamingOptions); const normalizedStream = providerStreamNormalizer.normalize(providerName, stream, { model: resolvedModel, requestId: context.jobId }); // Process normalized stream and build final response let accumulatedContent = ''; let finalUsage = null; let finalMetadata = {}; for await (const event of normalizedStream) { // Check for cancellation if (context.signal.aborted) { throw new Error('Chat execution was cancelled'); } switch (event.type) { case 'start': // Update job with streaming started status, provider info, and title await context.updateJob({ status: 'running', provider: providerName, model: resolvedModel, title: title || undefined, // Include title if generated progress: { phase: 'streaming_started', provider: providerName, model: resolvedModel } }); break; case 'delta': accumulatedContent += event.data.textDelta; // Update job with progress and full accumulated content await context.updateJob({ accumulated_content: accumulatedContent, // Store full content progress: { phase: 'streaming', provider: providerName, model: resolvedModel, content_length: accumulatedContent.length } }); break; case 'reasoning_summary': // Update job with reasoning summary debugLog(`[Chat] *** UPDATING JOB WITH REASONING: "${event.data.content?.substring(0, 100)}..."`); await context.updateJob({ reasoning_summary: event.data.content }); break; case 'usage': finalUsage = event.data.usage; break; case 'end': accumulatedContent = event.data.content || accumulatedContent; finalUsage = event.data.usage || finalUsage; finalMetadata = event.data.metadata || finalMetadata; break; case 'error': throw new Error(`Streaming error: ${event.data.error.message}`); } } response = { content: accumulatedContent, metadata: { ...finalMetadata, usage: finalUsage, streaming: true } }; } else { // Fall back to regular invoke debugLog(`Chat: Using regular invoke for provider ${providerName}`); response = await selectedProvider.invoke(messages, providerOptions); } const executionTime = (Date.now() - startTime) / 1000; // Validate response if (!response || !response.content) { throw new Error('Provider returned invalid response'); } // Store reasoning summary from OpenAI if available if (response.metadata?.usage?.reasoning_summary && context && context.updateJob) { try { await context.updateJob({ reasoning_summary: response.metadata.usage.reasoning_summary }); debugLog(`Chat: Stored reasoning summary`); } catch (error) { debugError('Chat: Failed to store reasoning summary', error); } } // Generate final summary for responses longer than 100 characters (non-blocking) let finalSummary = null; if (response.content && response.content.length > 100) { try { finalSummary = await summarizationService.generateFinalSummary(response.content); debugLog(`Chat: Generated final summary - "${finalSummary}"`); // Store final summary in job if (finalSummary && context && context.updateJob) { await context.updateJob({ final_summary: finalSummary }); } } catch (error) { debugError('Chat: Failed to generate final summary', error); // Continue without summary if generation fails } } // Add assistant response to conversation history const assistantMessage = { role: 'assistant', content: response.content }; const updatedMessages = [...messages, assistantMessage]; // Save conversation state try { const conversationState = { messages: updatedMessages, provider: providerName, model, lastUpdated: Date.now() }; await continuationStore.set(continuationId, conversationState); } catch (error) { logger.error('Error saving conversation', { error }); // Continue even if save fails } // Return complete result for job completion return { content: response.content, title: title || undefined, // Include title if generated summary: finalSummary || undefined, // Include summary if generated continuation: { id: continuationId, provider: providerName, model, messageCount: updatedMessages.filter(msg => msg.role !== 'system').length }, metadata: { provider: providerName, model: resolvedModel, execution_time: executionTime, async_execution: true, ...response.metadata } }; } // Tool metadata chatTool.description = 'GENERAL CHAT & COLLABORATIVE THINKING - For development assistance, brainstorming, and code analysis. Supports files, images, and conversation continuation. Use model: "auto" for automatic model selection.'; chatTool.inputSchema = { type: 'object', properties: { prompt: { type: 'string', description: 'Your question or topic with relevant context. More detail enables better responses. Example: "How should I structure the authentication module for this Express.js API?"', }, model: { type: 'string', description: 'AI model to use. Examples: "auto" (recommended), "gpt-5", "gemini-2.5-pro", "grok-4-0709". Defaults to auto-selection.', }, files: { type: 'array', items: { type: 'string' }, description: 'File paths to include as context (absolute or relative paths). Example: ["C:\\Users\\username\\project\\src\\auth.js", "./config.json"]', }, images: { type: 'array', items: { type: 'string' }, description: 'Image paths for visual context (absolute or relative paths, or base64 data). Example: ["C:\\Users\\username\\diagram.png", "./screenshot.jpg", "..."]', }, continuation_id: { type: 'string', description: 'Continuation ID for persistent conversation. Example: "chat_1703123456789_abc123"', }, temperature: { type: 'number', description: 'Response randomness (0.0-1.0). Examples: 0.2 (focused), 0.5 (balanced), 0.8 (creative). Default: 0.5', minimum: 0.0, maximum: 1.0, default: 0.5 }, reasoning_effort: { type: 'string', enum: ['minimal', 'low', 'medium', 'high', 'max'], description: 'Reasoning depth for thinking models. Examples: "minimal" (fastest, few reasoning tokens), "low" (light analysis), "medium" (balanced), "high" (complex analysis). Default: "medium"', default: 'medium' }, verbosity: { type: 'string', enum: ['low', 'medium', 'high'], description: 'Output verbosity for GPT-5 models. Examples: "low" (concise answers), "medium" (balanced), "high" (thorough explanations). Default: "medium"', default: 'medium' }, use_websearch: { type: 'boolean', description: 'Enable web search for current information. Example: true for recent developments or up to date documentation. Default: false', default: false }, async: { type: 'boolean', description: 'Execute chat in background. When true, returns continuation_id immediately and processes request asynchronously. Default: false', default: false }, }, required: ['prompt'], };