UNPKG

context-x-mcp

Version:

Multi-agent context enrichment system with auto-topic detection, auto-tool selection, and distributed specialized roles - A Model Context Provider (MCP) server for intelligent context management

138 lines (118 loc) 4.44 kB
/** * Context Coordinator Agent * Main orchestration agent for Context[X]MCP */ export class ContextCoordinator { constructor(config, logger) { this.config = config; this.logger = logger; this.agents = new Map(); this.isInitialized = false; } async initialize() { try { this.logger.info('Initializing Context Coordinator...'); // TODO: Initialize all agent modules // - Browser Research Agent // - Memory Agent // - Tool Orchestrator Agent // - Quality Assessment Agent this.isInitialized = true; this.logger.info('Context Coordinator initialized successfully'); } catch (error) { this.logger.error('Failed to initialize Context Coordinator:', error); throw error; } } async enrichContext(args) { const { query, depth = 'detailed', sources = ['web', 'memory', 'tools'], enableBrowserResearch = true } = args; this.logger.info(`Enriching context for query: "${query}"`); this.logger.debug(`Depth: ${depth}, Sources: ${sources.join(', ')}, Browser: ${enableBrowserResearch}`); try { // TODO: Implement multi-agent context enrichment // 1. Topic detection and classification // 2. Agent selection based on query type // 3. Parallel execution of selected agents // 4. Result aggregation and quality assessment // 5. Return enriched context return { content: [ { type: 'text', text: `Context enrichment for "${query}" (${depth} level)\n\nThis is a placeholder response. Multi-agent context enrichment will be implemented in the next development phase.\n\nRequested sources: ${sources.join(', ')}\nBrowser research: ${enableBrowserResearch ? 'enabled' : 'disabled'}`, }, ], }; } catch (error) { this.logger.error('Context enrichment failed:', error); throw error; } } async detectTopic(args) { const { text, confidence = 0.75 } = args; this.logger.info('Detecting topic for text analysis'); this.logger.debug(`Text length: ${text.length}, Confidence threshold: ${confidence}`); try { // TODO: Implement NLP-based topic detection // 1. Text preprocessing // 2. Feature extraction // 3. Classification using ML models // 4. Confidence scoring return { content: [ { type: 'text', text: `Topic detection for text analysis\n\nText: "${text.substring(0, 100)}${text.length > 100 ? '...' : ''}"\nConfidence threshold: ${confidence}\n\nThis is a placeholder response. Topic detection will be implemented in the next development phase.`, }, ], }; } catch (error) { this.logger.error('Topic detection failed:', error); throw error; } } async searchHistory(args) { const { query, limit = 10, similarity = 0.8 } = args; this.logger.info(`Searching context history for: "${query}"`); this.logger.debug(`Limit: ${limit}, Similarity threshold: ${similarity}`); try { // TODO: Implement vector-based context history search // 1. Query embedding generation // 2. Vector similarity search // 3. Result ranking and filtering // 4. Context retrieval and formatting return { content: [ { type: 'text', text: `Context history search for "${query}"\n\nLimit: ${limit} results\nSimilarity threshold: ${similarity}\n\nThis is a placeholder response. Context history search will be implemented in the next development phase.`, }, ], }; } catch (error) { this.logger.error('History search failed:', error); throw error; } } getActiveAgents() { return Array.from(this.agents.keys()); } async shutdown() { this.logger.info('Shutting down Context Coordinator...'); try { // TODO: Gracefully shutdown all agents for (const [name, agent] of this.agents) { if (agent.shutdown) { await agent.shutdown(); this.logger.debug(`Agent ${name} shutdown completed`); } } this.agents.clear(); this.isInitialized = false; this.logger.info('Context Coordinator shutdown completed'); } catch (error) { this.logger.error('Error during coordinator shutdown:', error); throw error; } } }