context-x-mcp
Version:
Multi-agent context enrichment system with auto-topic detection, auto-tool selection, and distributed specialized roles - A Model Context Provider (MCP) server for intelligent context management
138 lines (118 loc) • 4.44 kB
JavaScript
/**
* Context Coordinator Agent
* Main orchestration agent for Context[X]MCP
*/
export class ContextCoordinator {
constructor(config, logger) {
this.config = config;
this.logger = logger;
this.agents = new Map();
this.isInitialized = false;
}
async initialize() {
try {
this.logger.info('Initializing Context Coordinator...');
// TODO: Initialize all agent modules
// - Browser Research Agent
// - Memory Agent
// - Tool Orchestrator Agent
// - Quality Assessment Agent
this.isInitialized = true;
this.logger.info('Context Coordinator initialized successfully');
} catch (error) {
this.logger.error('Failed to initialize Context Coordinator:', error);
throw error;
}
}
async enrichContext(args) {
const { query, depth = 'detailed', sources = ['web', 'memory', 'tools'], enableBrowserResearch = true } = args;
this.logger.info(`Enriching context for query: "${query}"`);
this.logger.debug(`Depth: ${depth}, Sources: ${sources.join(', ')}, Browser: ${enableBrowserResearch}`);
try {
// TODO: Implement multi-agent context enrichment
// 1. Topic detection and classification
// 2. Agent selection based on query type
// 3. Parallel execution of selected agents
// 4. Result aggregation and quality assessment
// 5. Return enriched context
return {
content: [
{
type: 'text',
text: `Context enrichment for "${query}" (${depth} level)\n\nThis is a placeholder response. Multi-agent context enrichment will be implemented in the next development phase.\n\nRequested sources: ${sources.join(', ')}\nBrowser research: ${enableBrowserResearch ? 'enabled' : 'disabled'}`,
},
],
};
} catch (error) {
this.logger.error('Context enrichment failed:', error);
throw error;
}
}
async detectTopic(args) {
const { text, confidence = 0.75 } = args;
this.logger.info('Detecting topic for text analysis');
this.logger.debug(`Text length: ${text.length}, Confidence threshold: ${confidence}`);
try {
// TODO: Implement NLP-based topic detection
// 1. Text preprocessing
// 2. Feature extraction
// 3. Classification using ML models
// 4. Confidence scoring
return {
content: [
{
type: 'text',
text: `Topic detection for text analysis\n\nText: "${text.substring(0, 100)}${text.length > 100 ? '...' : ''}"\nConfidence threshold: ${confidence}\n\nThis is a placeholder response. Topic detection will be implemented in the next development phase.`,
},
],
};
} catch (error) {
this.logger.error('Topic detection failed:', error);
throw error;
}
}
async searchHistory(args) {
const { query, limit = 10, similarity = 0.8 } = args;
this.logger.info(`Searching context history for: "${query}"`);
this.logger.debug(`Limit: ${limit}, Similarity threshold: ${similarity}`);
try {
// TODO: Implement vector-based context history search
// 1. Query embedding generation
// 2. Vector similarity search
// 3. Result ranking and filtering
// 4. Context retrieval and formatting
return {
content: [
{
type: 'text',
text: `Context history search for "${query}"\n\nLimit: ${limit} results\nSimilarity threshold: ${similarity}\n\nThis is a placeholder response. Context history search will be implemented in the next development phase.`,
},
],
};
} catch (error) {
this.logger.error('History search failed:', error);
throw error;
}
}
getActiveAgents() {
return Array.from(this.agents.keys());
}
async shutdown() {
this.logger.info('Shutting down Context Coordinator...');
try {
// TODO: Gracefully shutdown all agents
for (const [name, agent] of this.agents) {
if (agent.shutdown) {
await agent.shutdown();
this.logger.debug(`Agent ${name} shutdown completed`);
}
}
this.agents.clear();
this.isInitialized = false;
this.logger.info('Context Coordinator shutdown completed');
} catch (error) {
this.logger.error('Error during coordinator shutdown:', error);
throw error;
}
}
}