UNPKG

context-x-mcp

Version:

Multi-agent context enrichment system with auto-topic detection, auto-tool selection, and distributed specialized roles - A Model Context Provider (MCP) server for intelligent context management

285 lines (220 loc) 9.15 kB
# Context[X]MCP Architecture ## Overview Context[X]MCP is a multi-agent system designed for intelligent context enrichment through distributed specialized roles, auto-topic detection, and dynamic tool orchestration. ## System Architecture ### High-Level Components ``` ┌─────────────────────────────────────────────────────────┐ │ MCP Client Layer │ │ (Cursor, Claude Desktop, VS Code) │ └─────────────────────┬───────────────────────────────────┘ │ ┌─────────────────────▼───────────────────────────────────┐ │ Context[X]MCP Server │ │ ┌─────────────────────────────────────────────────┐ │ │ │ Context Coordinator Agent │ │ │ │ (Main Orchestration & Routing) │ │ │ └─────────────────────┬───────────────────────────┘ │ │ │ │ │ ┌─────────────────────▼───────────────────────────┐ │ │ │ Multi-Agent System │ │ │ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │ │ │ │ │ Browser │ │ Memory │ │Tool Orch. │ │ │ │ │ │ Research │ │ Agent │ │ Agent │ │ │ │ │ │ Agent │ │ │ │ │ │ │ │ │ └─────────────┘ └─────────────┘ └─────────────┘ │ │ │ │ ┌─────────────┐ │ │ │ │ │ Quality │ │ │ │ │ │ Assessment │ │ │ │ │ │ Agent │ │ │ │ │ └─────────────┘ │ │ │ └─────────────────────────────────────────────────┘ │ └─────────────────────┬───────────────────────────────────┘ │ ┌─────────────────────▼───────────────────────────────────┐ │ External MCP Services │ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────────────┐ │ │ │Browser[X] │ │ Vector │ │ Other MCP │ │ │ │ MCP │ │ Storage │ │ Tools │ │ │ └─────────────┘ └─────────────┘ └─────────────────────┘ │ └─────────────────────────────────────────────────────────┘ ``` ## Agent Specifications ### 1. Context Coordinator Agent **Role**: Main orchestration and intelligent routing **Responsibilities**: - Topic detection and classification - Agent selection based on query analysis - Task distribution and coordination - Result aggregation and synthesis - Quality control and validation **Key Features**: - NLP-based intent recognition - Dynamic agent routing algorithms - Performance optimization - Error handling and recovery ### 2. Browser Research Agent **Role**: Web-based data collection and analysis **Responsibilities**: - Integration with Browser[X]MCP - Automated web research - Content extraction and validation - Link analysis and discovery - Real-time data gathering **Key Features**: - Form interaction capabilities - Dynamic content handling - Screenshot analysis - Navigation optimization ### 3. Context Memory Agent **Role**: Historical context management and pattern recognition **Responsibilities**: - Context history storage - Vector-based similarity search - Pattern recognition and learning - Long-term memory management - Context retrieval optimization **Key Features**: - Vector embeddings - Similarity scoring - Memory cleanup and optimization - Pattern analysis ### 4. Tool Orchestrator Agent **Role**: MCP tool discovery and coordination **Responsibilities**: - MCP tool capability mapping - Dynamic tool discovery - Performance-based selection - Resource management - Tool integration **Key Features**: - Auto-discovery mechanisms - Capability assessment - Load balancing - Error handling ### 5. Quality Assessment Agent **Role**: Context validation and scoring **Responsibilities**: - Content relevance scoring - Information verification - Completeness evaluation - Quality metrics tracking - Result optimization **Key Features**: - Relevance algorithms - Verification methods - Quality metrics - Performance tracking ## Data Flow ### Context Enrichment Flow 1. **Request Reception** - MCP client sends enrichment request - Context Coordinator receives and analyzes query 2. **Topic Detection** - NLP analysis of query content - Intent and category classification - Confidence scoring 3. **Agent Selection** - Based on topic analysis - Resource availability - Performance metrics 4. **Parallel Execution** - Selected agents execute in parallel - Real-time progress monitoring - Error handling and recovery 5. **Result Aggregation** - Results collected from all agents - Quality assessment and scoring - Conflict resolution 6. **Response Synthesis** - Final context compilation - Formatting and optimization - Response delivery ## Configuration Architecture ### Environment-Based Configuration ```javascript // Core MCP Settings MCP_PORT=3002 NODE_ENV=development // Agent Configuration AGENT_MAX_CONCURRENCY=5 AGENT_TIMEOUT=30000 // Context Management CONTEXT_HISTORY_SIZE=1000 CONTEXT_RELEVANCE_THRESHOLD=0.7 // External Integrations BROWSER_X_MCP_URL=http://localhost:3001 BROWSER_X_MCP_ENABLED=true // Performance Optimization VECTOR_SIMILARITY_THRESHOLD=0.8 QUALITY_MIN_SCORE=0.6 ``` ### Dynamic Configuration - Runtime parameter adjustment - Agent-specific configurations - Performance-based optimizations - Resource allocation tuning ## Integration Patterns ### Browser[X]MCP Integration ```javascript // Browser Research Agent integration const browserAgent = new BrowserResearchAgent({ browserXMcpUrl: config.get('BROWSER_X_MCP_URL'), timeout: config.getNumber('BROWSER_X_MCP_TIMEOUT'), enableFormTesting: true, screenshotAnalysis: true }); ``` ### Vector Storage Integration ```javascript // Memory Agent vector operations const memoryAgent = new ContextMemoryAgent({ vectorDbPath: config.get('VECTOR_DB_PATH'), similarityThreshold: config.getFloat('VECTOR_SIMILARITY_THRESHOLD'), maxResults: config.getNumber('VECTOR_MAX_RESULTS') }); ``` ## Scalability Considerations ### Horizontal Scaling - Agent instance multiplication - Load balancing across agents - Resource pool management - Dynamic scaling based on demand ### Performance Optimization - Parallel processing maximization - Cache utilization - Memory management - Network optimization ### Resource Management - CPU and memory monitoring - Agent resource allocation - Garbage collection optimization - Connection pooling ## Security Architecture ### Data Protection - Local processing priority - Encrypted inter-agent communication - Secure configuration management - Access control mechanisms ### Error Handling - Graceful degradation - Circuit breaker patterns - Retry mechanisms - Logging and monitoring ## Development Roadmap ### Phase 1: Foundation ✅ - Basic MCP server - Agent framework - Configuration system ### Phase 2: Core Agents (Current) - Context Coordinator implementation - Topic detection algorithms - Basic agent communication ### Phase 3: Advanced Features - Browser[X]MCP integration - Vector-based memory - Quality assessment system ### Phase 4: Optimization - Performance tuning - Advanced pattern learning - Production deployment