context-x-mcp
Version:
Multi-agent context enrichment system with auto-topic detection, auto-tool selection, and distributed specialized roles - A Model Context Provider (MCP) server for intelligent context management
285 lines (220 loc) • 9.15 kB
Markdown
# Context[X]MCP Architecture
## Overview
Context[X]MCP is a multi-agent system designed for intelligent context enrichment through distributed specialized roles, auto-topic detection, and dynamic tool orchestration.
## System Architecture
### High-Level Components
```
┌─────────────────────────────────────────────────────────┐
│ MCP Client Layer │
│ (Cursor, Claude Desktop, VS Code) │
└─────────────────────┬───────────────────────────────────┘
│
┌─────────────────────▼───────────────────────────────────┐
│ Context[X]MCP Server │
│ ┌─────────────────────────────────────────────────┐ │
│ │ Context Coordinator Agent │ │
│ │ (Main Orchestration & Routing) │ │
│ └─────────────────────┬───────────────────────────┘ │
│ │ │
│ ┌─────────────────────▼───────────────────────────┐ │
│ │ Multi-Agent System │ │
│ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │ │
│ │ │ Browser │ │ Memory │ │Tool Orch. │ │ │
│ │ │ Research │ │ Agent │ │ Agent │ │ │
│ │ │ Agent │ │ │ │ │ │ │
│ │ └─────────────┘ └─────────────┘ └─────────────┘ │ │
│ │ ┌─────────────┐ │ │
│ │ │ Quality │ │ │
│ │ │ Assessment │ │ │
│ │ │ Agent │ │ │
│ │ └─────────────┘ │ │
│ └─────────────────────────────────────────────────┘ │
└─────────────────────┬───────────────────────────────────┘
│
┌─────────────────────▼───────────────────────────────────┐
│ External MCP Services │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────────────┐ │
│ │Browser[X] │ │ Vector │ │ Other MCP │ │
│ │ MCP │ │ Storage │ │ Tools │ │
│ └─────────────┘ └─────────────┘ └─────────────────────┘ │
└─────────────────────────────────────────────────────────┘
```
## Agent Specifications
### 1. Context Coordinator Agent
**Role**: Main orchestration and intelligent routing
**Responsibilities**:
- Topic detection and classification
- Agent selection based on query analysis
- Task distribution and coordination
- Result aggregation and synthesis
- Quality control and validation
**Key Features**:
- NLP-based intent recognition
- Dynamic agent routing algorithms
- Performance optimization
- Error handling and recovery
### 2. Browser Research Agent
**Role**: Web-based data collection and analysis
**Responsibilities**:
- Integration with Browser[X]MCP
- Automated web research
- Content extraction and validation
- Link analysis and discovery
- Real-time data gathering
**Key Features**:
- Form interaction capabilities
- Dynamic content handling
- Screenshot analysis
- Navigation optimization
### 3. Context Memory Agent
**Role**: Historical context management and pattern recognition
**Responsibilities**:
- Context history storage
- Vector-based similarity search
- Pattern recognition and learning
- Long-term memory management
- Context retrieval optimization
**Key Features**:
- Vector embeddings
- Similarity scoring
- Memory cleanup and optimization
- Pattern analysis
### 4. Tool Orchestrator Agent
**Role**: MCP tool discovery and coordination
**Responsibilities**:
- MCP tool capability mapping
- Dynamic tool discovery
- Performance-based selection
- Resource management
- Tool integration
**Key Features**:
- Auto-discovery mechanisms
- Capability assessment
- Load balancing
- Error handling
### 5. Quality Assessment Agent
**Role**: Context validation and scoring
**Responsibilities**:
- Content relevance scoring
- Information verification
- Completeness evaluation
- Quality metrics tracking
- Result optimization
**Key Features**:
- Relevance algorithms
- Verification methods
- Quality metrics
- Performance tracking
## Data Flow
### Context Enrichment Flow
1. **Request Reception**
- MCP client sends enrichment request
- Context Coordinator receives and analyzes query
2. **Topic Detection**
- NLP analysis of query content
- Intent and category classification
- Confidence scoring
3. **Agent Selection**
- Based on topic analysis
- Resource availability
- Performance metrics
4. **Parallel Execution**
- Selected agents execute in parallel
- Real-time progress monitoring
- Error handling and recovery
5. **Result Aggregation**
- Results collected from all agents
- Quality assessment and scoring
- Conflict resolution
6. **Response Synthesis**
- Final context compilation
- Formatting and optimization
- Response delivery
## Configuration Architecture
### Environment-Based Configuration
```javascript
// Core MCP Settings
MCP_PORT=3002
NODE_ENV=development
// Agent Configuration
AGENT_MAX_CONCURRENCY=5
AGENT_TIMEOUT=30000
// Context Management
CONTEXT_HISTORY_SIZE=1000
CONTEXT_RELEVANCE_THRESHOLD=0.7
// External Integrations
BROWSER_X_MCP_URL=http://localhost:3001
BROWSER_X_MCP_ENABLED=true
// Performance Optimization
VECTOR_SIMILARITY_THRESHOLD=0.8
QUALITY_MIN_SCORE=0.6
```
### Dynamic Configuration
- Runtime parameter adjustment
- Agent-specific configurations
- Performance-based optimizations
- Resource allocation tuning
## Integration Patterns
### Browser[X]MCP Integration
```javascript
// Browser Research Agent integration
const browserAgent = new BrowserResearchAgent({
browserXMcpUrl: config.get('BROWSER_X_MCP_URL'),
timeout: config.getNumber('BROWSER_X_MCP_TIMEOUT'),
enableFormTesting: true,
screenshotAnalysis: true
});
```
### Vector Storage Integration
```javascript
// Memory Agent vector operations
const memoryAgent = new ContextMemoryAgent({
vectorDbPath: config.get('VECTOR_DB_PATH'),
similarityThreshold: config.getFloat('VECTOR_SIMILARITY_THRESHOLD'),
maxResults: config.getNumber('VECTOR_MAX_RESULTS')
});
```
## Scalability Considerations
### Horizontal Scaling
- Agent instance multiplication
- Load balancing across agents
- Resource pool management
- Dynamic scaling based on demand
### Performance Optimization
- Parallel processing maximization
- Cache utilization
- Memory management
- Network optimization
### Resource Management
- CPU and memory monitoring
- Agent resource allocation
- Garbage collection optimization
- Connection pooling
## Security Architecture
### Data Protection
- Local processing priority
- Encrypted inter-agent communication
- Secure configuration management
- Access control mechanisms
### Error Handling
- Graceful degradation
- Circuit breaker patterns
- Retry mechanisms
- Logging and monitoring
## Development Roadmap
### Phase 1: Foundation ✅
- Basic MCP server
- Agent framework
- Configuration system
### Phase 2: Core Agents (Current)
- Context Coordinator implementation
- Topic detection algorithms
- Basic agent communication
### Phase 3: Advanced Features
- Browser[X]MCP integration
- Vector-based memory
- Quality assessment system
### Phase 4: Optimization
- Performance tuning
- Advanced pattern learning
- Production deployment