concaveman
Version:
Fast 2D concave hull algorithm in JavaScript (generates an outline of a point set)
376 lines (311 loc) • 10.6 kB
JavaScript
import RBush from 'rbush';
import Queue from 'tinyqueue';
import pointInPolygon from 'point-in-polygon';
import {orient2d} from 'robust-predicates';
export default function concaveman(points, concavity, lengthThreshold) {
// a relative measure of concavity; higher value means simpler hull
concavity = Math.max(0, concavity === undefined ? 2 : concavity);
// when a segment goes below this length threshold, it won't be drilled down further
lengthThreshold = lengthThreshold || 0;
// start with a convex hull of the points
const hull = fastConvexHull(points);
// index the points with an R-tree
const tree = new RBush(16);
tree.toBBox = function (a) {
return {
minX: a[0],
minY: a[1],
maxX: a[0],
maxY: a[1]
};
};
tree.compareMinX = function (a, b) { return a[0] - b[0]; };
tree.compareMinY = function (a, b) { return a[1] - b[1]; };
tree.load(points);
// turn the convex hull into a linked list and populate the initial edge queue with the nodes
const queue = [];
let last;
for (let i = 0; i < hull.length; i++) {
const p = hull[i];
tree.remove(p);
last = insertNode(p, last);
queue.push(last);
}
// index the segments with an R-tree (for intersection checks)
const segTree = new RBush(16);
for (let i = 0; i < queue.length; i++) segTree.insert(updateBBox(queue[i]));
const sqConcavity = concavity * concavity;
const sqLenThreshold = lengthThreshold * lengthThreshold;
// process edges one by one
while (queue.length) {
const node = queue.shift();
const a = node.p;
const b = node.next.p;
// skip the edge if it's already short enough
const sqLen = getSqDist(a, b);
if (sqLen < sqLenThreshold) continue;
const maxSqLen = sqLen / sqConcavity;
// find the best connection point for the current edge to flex inward to
const p = findCandidate(tree, node.prev.p, a, b, node.next.next.p, maxSqLen, segTree);
// if we found a connection and it satisfies our concavity measure
if (p && Math.min(getSqDist(p, a), getSqDist(p, b)) <= maxSqLen) {
// connect the edge endpoints through this point and add 2 new edges to the queue
queue.push(node);
queue.push(insertNode(p, node));
// update point and segment indexes
tree.remove(p);
segTree.remove(node);
segTree.insert(updateBBox(node));
segTree.insert(updateBBox(node.next));
}
}
// convert the resulting hull linked list to an array of points
let node = last;
const concave = [];
do {
concave.push(node.p);
node = node.next;
} while (node !== last);
concave.push(node.p);
return concave;
}
function findCandidate(tree, a, b, c, d, maxDist, segTree) {
const queue = new Queue([], compareDist);
let node = tree.data;
// search through the point R-tree with a depth-first search using a priority queue
// in the order of distance to the edge (b, c)
while (node) {
for (let i = 0; i < node.children.length; i++) {
const child = node.children[i];
const dist = node.leaf ? sqSegDist(child, b, c) : sqSegBoxDist(b, c, child);
if (dist > maxDist) continue; // skip the node if it's farther than we ever need
queue.push({
node: child,
dist
});
}
while (queue.length && !queue.peek().node.children) {
const item = queue.pop();
const p = item.node;
// skip all points that are as close to adjacent edges (a,b) and (c,d),
// and points that would introduce self-intersections when connected
const d0 = sqSegDist(p, a, b);
const d1 = sqSegDist(p, c, d);
if (item.dist < d0 && item.dist < d1 &&
noIntersections(b, p, segTree) &&
noIntersections(c, p, segTree)) return p;
}
node = queue.pop();
if (node) node = node.node;
}
return null;
}
function compareDist(a, b) {
return a.dist - b.dist;
}
// square distance from a segment bounding box to the given one
function sqSegBoxDist(a, b, bbox) {
if (inside(a, bbox) || inside(b, bbox)) return 0;
const d1 = sqSegSegDist(a[0], a[1], b[0], b[1], bbox.minX, bbox.minY, bbox.maxX, bbox.minY);
if (d1 === 0) return 0;
const d2 = sqSegSegDist(a[0], a[1], b[0], b[1], bbox.minX, bbox.minY, bbox.minX, bbox.maxY);
if (d2 === 0) return 0;
const d3 = sqSegSegDist(a[0], a[1], b[0], b[1], bbox.maxX, bbox.minY, bbox.maxX, bbox.maxY);
if (d3 === 0) return 0;
const d4 = sqSegSegDist(a[0], a[1], b[0], b[1], bbox.minX, bbox.maxY, bbox.maxX, bbox.maxY);
if (d4 === 0) return 0;
return Math.min(d1, d2, d3, d4);
}
function inside(a, bbox) {
return a[0] >= bbox.minX &&
a[0] <= bbox.maxX &&
a[1] >= bbox.minY &&
a[1] <= bbox.maxY;
}
// check if the edge (a,b) doesn't intersect any other edges
function noIntersections(a, b, segTree) {
const minX = Math.min(a[0], b[0]);
const minY = Math.min(a[1], b[1]);
const maxX = Math.max(a[0], b[0]);
const maxY = Math.max(a[1], b[1]);
const edges = segTree.search({minX, minY, maxX, maxY});
for (let i = 0; i < edges.length; i++) {
if (intersects(edges[i].p, edges[i].next.p, a, b)) return false;
}
return true;
}
function cross(p1, p2, p3) {
return orient2d(p1[0], p1[1], p2[0], p2[1], p3[0], p3[1]);
}
// check if the edges (p1,q1) and (p2,q2) intersect
function intersects(p1, q1, p2, q2) {
return p1 !== q2 && q1 !== p2 &&
cross(p1, q1, p2) > 0 !== cross(p1, q1, q2) > 0 &&
cross(p2, q2, p1) > 0 !== cross(p2, q2, q1) > 0;
}
// update the bounding box of a node's edge
function updateBBox(node) {
const p1 = node.p;
const p2 = node.next.p;
node.minX = Math.min(p1[0], p2[0]);
node.minY = Math.min(p1[1], p2[1]);
node.maxX = Math.max(p1[0], p2[0]);
node.maxY = Math.max(p1[1], p2[1]);
return node;
}
// speed up convex hull by filtering out points inside quadrilateral formed by 4 extreme points
function fastConvexHull(points) {
let left = points[0];
let top = points[0];
let right = points[0];
let bottom = points[0];
// find the leftmost, rightmost, topmost and bottommost points
for (let i = 0; i < points.length; i++) {
const p = points[i];
if (p[0] < left[0]) left = p;
if (p[0] > right[0]) right = p;
if (p[1] < top[1]) top = p;
if (p[1] > bottom[1]) bottom = p;
}
// filter out points that are inside the resulting quadrilateral
const cull = [left, top, right, bottom];
const filtered = cull.slice();
for (let i = 0; i < points.length; i++) {
if (!pointInPolygon(points[i], cull)) filtered.push(points[i]);
}
// get convex hull around the filtered points
return convexHull(filtered);
}
// create a new node in a doubly linked list
function insertNode(p, prev) {
const node = {
p,
prev: null,
next: null,
minX: 0,
minY: 0,
maxX: 0,
maxY: 0
};
if (!prev) {
node.prev = node;
node.next = node;
} else {
node.next = prev.next;
node.prev = prev;
prev.next.prev = node;
prev.next = node;
}
return node;
}
// square distance between 2 points
function getSqDist(p1, p2) {
const dx = p1[0] - p2[0],
dy = p1[1] - p2[1];
return dx * dx + dy * dy;
}
// square distance from a point to a segment
function sqSegDist(p, p1, p2) {
let x = p1[0],
y = p1[1],
dx = p2[0] - x,
dy = p2[1] - y;
if (dx !== 0 || dy !== 0) {
const t = ((p[0] - x) * dx + (p[1] - y) * dy) / (dx * dx + dy * dy);
if (t > 1) {
x = p2[0];
y = p2[1];
} else if (t > 0) {
x += dx * t;
y += dy * t;
}
}
dx = p[0] - x;
dy = p[1] - y;
return dx * dx + dy * dy;
}
// segment to segment distance, ported from http://geomalgorithms.com/a07-_distance.html by Dan Sunday
function sqSegSegDist(x0, y0, x1, y1, x2, y2, x3, y3) {
const ux = x1 - x0;
const uy = y1 - y0;
const vx = x3 - x2;
const vy = y3 - y2;
const wx = x0 - x2;
const wy = y0 - y2;
const a = ux * ux + uy * uy;
const b = ux * vx + uy * vy;
const c = vx * vx + vy * vy;
const d = ux * wx + uy * wy;
const e = vx * wx + vy * wy;
const D = a * c - b * b;
let sN, tN;
let sD = D;
let tD = D;
if (D === 0) {
sN = 0;
sD = 1;
tN = e;
tD = c;
} else {
sN = b * e - c * d;
tN = a * e - b * d;
if (sN < 0) {
sN = 0;
tN = e;
tD = c;
} else if (sN > sD) {
sN = sD;
tN = e + b;
tD = c;
}
}
if (tN < 0.0) {
tN = 0.0;
if (-d < 0.0) sN = 0.0;
else if (-d > a) sN = sD;
else {
sN = -d;
sD = a;
}
} else if (tN > tD) {
tN = tD;
if ((-d + b) < 0.0) sN = 0;
else if (-d + b > a) sN = sD;
else {
sN = -d + b;
sD = a;
}
}
const sc = sN === 0 ? 0 : sN / sD;
const tc = tN === 0 ? 0 : tN / tD;
const cx = (1 - sc) * x0 + sc * x1;
const cy = (1 - sc) * y0 + sc * y1;
const cx2 = (1 - tc) * x2 + tc * x3;
const cy2 = (1 - tc) * y2 + tc * y3;
const dx = cx2 - cx;
const dy = cy2 - cy;
return dx * dx + dy * dy;
}
function compareByX(a, b) {
return a[0] === b[0] ? a[1] - b[1] : a[0] - b[0];
}
function convexHull(points) {
points.sort(compareByX);
const lower = [];
for (let i = 0; i < points.length; i++) {
while (lower.length >= 2 && cross(lower[lower.length - 2], lower[lower.length - 1], points[i]) <= 0) {
lower.pop();
}
lower.push(points[i]);
}
const upper = [];
for (let ii = points.length - 1; ii >= 0; ii--) {
while (upper.length >= 2 && cross(upper[upper.length - 2], upper[upper.length - 1], points[ii]) <= 0) {
upper.pop();
}
upper.push(points[ii]);
}
upper.pop();
lower.pop();
return lower.concat(upper);
}