UNPKG

colorjs.io

Version:

Let’s get serious about color

137 lines (123 loc) 4.28 kB
import ColorSpace from "../space.js"; import {multiplyMatrices} from "../util.js"; import XYZ_Abs_D65 from "./xyz-abs-d65.js"; const c1 = 3424 / 4096; const c2 = 2413 / 128; const c3 = 2392 / 128; const m1 = 2610 / 16384; const m2 = 2523 / 32; const im1 = 16384 / 2610; const im2 = 32 / 2523; // The matrix below includes the 4% crosstalk components // and is from the Dolby "What is ICtCp" paper" const XYZtoLMS_M = [ [ 0.3592, 0.6976, -0.0358], [-0.1922, 1.1004, 0.0755], [ 0.0070, 0.0749, 0.8434] ]; // linear-light Rec.2020 to LMS, again with crosstalk // rational terms from Jan Fröhlich, // Encoding High Dynamic Range andWide Color Gamut Imagery, p.97 // and ITU-R BT.2124-0 p.2 /* const Rec2020toLMS_M = [ [ 1688 / 4096, 2146 / 4096, 262 / 4096 ], [ 683 / 4096, 2951 / 4096, 462 / 4096 ], [ 99 / 4096, 309 / 4096, 3688 / 4096 ] ]; */ // this includes the Ebner LMS coefficients, // the rotation, and the scaling to [-0.5,0.5] range // rational terms from Fröhlich p.97 // and ITU-R BT.2124-0 pp.2-3 const LMStoIPT_M = [ [ 2048 / 4096, 2048 / 4096, 0 ], [ 6610 / 4096, -13613 / 4096, 7003 / 4096 ], [ 17933 / 4096, -17390 / 4096, -543 / 4096 ] ]; // inverted matrices, calculated from the above const IPTtoLMS_M = [ [0.99998889656284013833, 0.00860505014728705821, 0.1110343715986164786 ], [1.0000111034371598616, -0.00860505014728705821, -0.1110343715986164786 ], [1.000032063391005412, 0.56004913547279000113, -0.32063391005412026469], ]; /* const LMStoRec2020_M = [ [ 3.4375568932814012112, -2.5072112125095058195, 0.069654319228104608382], [-0.79142868665644156125, 1.9838372198740089874, -0.19240853321756742626 ], [-0.025646662911506476363, -0.099240248643945566751, 1.1248869115554520431 ] ]; */ const LMStoXYZ_M = [ [ 2.0701800566956135096, -1.3264568761030210255, 0.20661600684785517081 ], [ 0.36498825003265747974, 0.68046736285223514102, -0.045421753075853231409], [-0.049595542238932107896, -0.049421161186757487412, 1.1879959417328034394 ] ]; // Only the PQ form of ICtCp is implemented here. There is also an HLG form. // from Dolby, "WHAT IS ICTCP?" // https://professional.dolby.com/siteassets/pdfs/ictcp_dolbywhitepaper_v071.pdf // and // Dolby, "Perceptual Color Volume // Measuring the Distinguishable Colors of HDR and WCG Displays" // https://professional.dolby.com/siteassets/pdfs/dolby-vision-measuring-perceptual-color-volume-v7.1.pdf export default new ColorSpace({ id: "ictcp", name: "ICTCP", // From BT.2100-2 page 7: // During production, signal values are expected to exceed the // range E′ = [0.0 : 1.0]. This provides processing headroom and avoids // signal degradation during cascaded processing. Such values of E′, // below 0.0 or exceeding 1.0, should not be clipped during production // and exchange. // Values below 0.0 should not be clipped in reference displays (even // though they represent “negative” light) to allow the black level of // the signal (LB) to be properly set using test signals known as “PLUGE” coords: { i: { refRange: [0, 1], // Constant luminance, name: "I" }, ct: { refRange: [-0.5, 0.5], // Full BT.2020 gamut in range [-0.5, 0.5] name: "CT" }, cp: { refRange: [-0.5, 0.5], name: "CP" } }, base: XYZ_Abs_D65, fromBase (XYZ) { // move to LMS cone domain let LMS = multiplyMatrices(XYZtoLMS_M, XYZ); return LMStoICtCp(LMS); }, toBase (ICtCp) { let LMS = ICtCptoLMS(ICtCp); return multiplyMatrices(LMStoXYZ_M, LMS); }, formats: { color: {} }, }); function LMStoICtCp (LMS) { // apply the PQ EOTF // we can't ever be dividing by zero because of the "1 +" in the denominator let PQLMS = LMS.map (function (val) { let num = c1 + (c2 * ((val / 10000) ** m1)); let denom = 1 + (c3 * ((val / 10000) ** m1)); return (num / denom) ** m2; }); // LMS to IPT, with rotation for Y'C'bC'r compatibility return multiplyMatrices(LMStoIPT_M, PQLMS); } function ICtCptoLMS (ICtCp) { let PQLMS = multiplyMatrices(IPTtoLMS_M, ICtCp); // From BT.2124-0 Annex 2 Conversion 3 let LMS = PQLMS.map (function (val) { let num = Math.max((val ** im2) - c1, 0); let denom = (c2 - (c3 * (val ** im2))); return 10000 * ((num / denom) ** im1); }); return LMS; }