UNPKG

codecrucible-synth

Version:

Production-Ready AI Development Platform with Multi-Voice Synthesis, Smithery MCP Integration, Enterprise Security, and Zero-Timeout Reliability

1,767 lines (1,575 loc) 67.1 kB
/** * Agent Ecosystem for CodeCrucible Synth * Production-ready specialized agents based on the multi-voice synthesis architecture * Each agent represents a different perspective and expertise domain */ import { EventEmitter } from 'events'; import { Logger } from '../logger.js'; // import { UnifiedModelClient } from '../../refactor/unified-model-client.js'; import { WorkflowOrchestrator } from '../workflow/workflow-orchestrator.js'; import { AdvancedToolOrchestrator } from '../tools/advanced-tool-orchestrator.js'; import { VectorRAGSystem } from '../rag/vector-rag-system.js'; import { IntelligentModelRouter } from '../routing/intelligent-model-router.js'; // Core Agent Interfaces export interface Agent { id: string; name: string; role: AgentRole; personality: AgentPersonality; capabilities: AgentCapability[]; expertise: ExpertiseDomain[]; status: AgentStatus; configuration: AgentConfiguration; // Core methods initialize(): Promise<void>; process(request: AgentRequest): Promise<AgentResponse>; collaborate(agents: Agent[], task: CollaborativeTask): Promise<CollaborativeResponse>; learn(feedback: AgentFeedback): Promise<void>; shutdown(): Promise<void>; } export interface AgentRole { type: | 'explorer' | 'analyzer' | 'implementor' | 'maintainer' | 'security' | 'optimizer' | 'tester' | 'architect' | 'reviewer'; description: string; responsibilities: string[]; authority: 'advisory' | 'decision-making' | 'implementation' | 'review'; scope: 'local' | 'project' | 'system' | 'global'; } export interface AgentPersonality { approach: | 'methodical' | 'creative' | 'pragmatic' | 'perfectionist' | 'innovative' | 'conservative' | 'aggressive'; communication: 'detailed' | 'concise' | 'technical' | 'narrative' | 'analytical'; riskTolerance: 'low' | 'medium' | 'high'; decisionStyle: 'quick' | 'deliberate' | 'collaborative' | 'independent'; learningStyle: 'experiential' | 'theoretical' | 'collaborative' | 'observational'; } export interface AgentCapability { name: string; level: 'novice' | 'intermediate' | 'expert' | 'master'; description: string; tools: string[]; prerequisites?: string[]; learnable: boolean; } export interface ExpertiseDomain { area: string; level: number; // 0-100 technologies: string[]; frameworks: string[]; patterns: string[]; experience: ExperienceMetric[]; } export interface ExperienceMetric { task: string; successRate: number; avgQuality: number; timeSpent: number; complexity: number; lastPerformed: Date; } export interface AgentStatus { state: 'idle' | 'busy' | 'learning' | 'collaborating' | 'offline' | 'error'; currentTask?: string; workload: number; // 0-100 availability: boolean; lastActivity: Date; health: AgentHealth; } export interface AgentHealth { performance: number; // 0-100 errorRate: number; responseTime: number; memoryUsage: number; issueCount: number; lastHealthCheck: Date; } export interface AgentConfiguration { modelPreferences: ModelPreference[]; behaviorSettings: BehaviorSettings; collaborationSettings: CollaborationSettings; learningSettings: LearningSettings; resourceLimits: ResourceLimits; } export interface ModelPreference { providerId: string; modelId: string; priority: number; useCase: string[]; configuration: Record<string, any>; } export interface BehaviorSettings { verbosity: 'minimal' | 'normal' | 'detailed' | 'verbose'; responseStyle: 'direct' | 'explanatory' | 'tutorial' | 'conversational'; errorHandling: 'strict' | 'permissive' | 'adaptive'; optimizationLevel: 'speed' | 'quality' | 'balanced'; } export interface CollaborationSettings { preferredTeamSize: number; leadershipStyle: 'democratic' | 'authoritative' | 'laissez-faire' | 'situational'; communicationFrequency: 'minimal' | 'regular' | 'frequent' | 'continuous'; conflictResolution: 'consensus' | 'voting' | 'authority' | 'escalation'; } export interface LearningSettings { adaptationRate: number; // 0-1 feedbackSensitivity: number; // 0-1 explorationRate: number; // 0-1 memoryRetention: number; // days learningMethods: string[]; } export interface ResourceLimits { maxMemoryUsage: number; // MB maxProcessingTime: number; // seconds maxConcurrentTasks: number; maxToolsPerTask: number; costBudget: number; } export interface AgentRequest { id: string; type: | 'analysis' | 'implementation' | 'review' | 'optimization' | 'testing' | 'documentation' | 'planning'; content: string; context?: AgentContext; constraints?: AgentConstraints; priority: 'low' | 'medium' | 'high' | 'critical'; deadline?: Date; requester: string; } export interface AgentContext { project?: ProjectContext; codebase?: CodebaseContext; session?: SessionContext; previous?: PreviousInteraction[]; environment?: EnvironmentContext; } export interface ProjectContext { name: string; type: string; technologies: string[]; architecture: string; conventions: Record<string, any>; constraints: string[]; } export interface CodebaseContext { languages: string[]; frameworks: string[]; patterns: string[]; size: number; complexity: number; quality: number; coverage: number; } export interface SessionContext { sessionId: string; duration: number; interactions: number; mood: 'positive' | 'neutral' | 'frustrated' | 'confused'; goals: string[]; } export interface PreviousInteraction { timestamp: Date; request: string; response: string; outcome: 'success' | 'partial' | 'failure'; feedback?: string; } export interface EnvironmentContext { os: string; tools: string[]; resources: ResourceAvailability; constraints: string[]; } export interface ResourceAvailability { cpu: number; memory: number; disk: number; network: number; } export interface AgentConstraints { timeLimit?: number; memoryLimit?: number; costLimit?: number; qualityThreshold?: number; approvedTools?: string[]; forbiddenActions?: string[]; } export interface AgentResponse { id: string; requestId: string; agentId: string; content: string; confidence: number; // 0-1 reasoning: string; suggestions?: string[]; alternatives?: string[]; warnings?: string[]; metadata: ResponseMetadata; actions?: AgentAction[]; collaboration?: CollaborationRequest; } export interface ResponseMetadata { processingTime: number; tokensUsed: number; toolsUsed: string[]; modelsUsed: string[]; qualityScore: number; complexity: number; resources: ResourceUsage; } export interface ResourceUsage { cpu: number; memory: number; cost: number; apiCalls: number; } export interface AgentAction { type: | 'file_create' | 'file_modify' | 'file_delete' | 'command_execute' | 'analysis_run' | 'test_run'; target: string; parameters: Record<string, any>; confirmation?: boolean; reversible: boolean; } export interface CollaborationRequest { type: 'review' | 'assistance' | 'validation' | 'brainstorm' | 'implementation'; targetAgents: string[]; content: string; urgency: 'low' | 'medium' | 'high'; } export interface CollaborativeTask { id: string; title: string; description: string; type: 'analysis' | 'implementation' | 'review' | 'architecture' | 'optimization'; complexity: number; participants: string[]; coordinator: string; phases: TaskPhase[]; dependencies: string[]; deadline?: Date; } export interface TaskPhase { id: string; name: string; description: string; assignedAgent: string; dependencies: string[]; estimatedDuration: number; status: 'pending' | 'in_progress' | 'completed' | 'blocked'; deliverables: string[]; } export interface CollaborativeResponse { taskId: string; phases: PhaseResult[]; synthesis: CollaborativeSynthesis; consensus: ConsensusMeasure; finalRecommendation: string; metadata: CollaborativeMetadata; } export interface PhaseResult { phaseId: string; agentId: string; result: AgentResponse; quality: number; confidence: number; issues?: string[]; } export interface CollaborativeSynthesis { approach: 'consensus' | 'best_of' | 'hybrid' | 'weighted_average'; weights: Record<string, number>; conflicts: ConflictResolution[]; finalOutput: string; confidenceScore: number; } export interface ConflictResolution { issue: string; positions: Array<{ agent: string; position: string; reasoning: string }>; resolution: string; method: 'voting' | 'authority' | 'compromise' | 'expert_decision'; } export interface ConsensusMeasure { agreement: number; // 0-1 conflicts: number; convergence: number; // 0-1 stability: number; // 0-1 } export interface CollaborativeMetadata { totalTime: number; participationLevel: Record<string, number>; communicationRounds: number; decisionsReached: number; escalationsRequired: number; } export interface AgentFeedback { requestId: string; responseId: string; rating: number; // 1-5 qualityAspects: QualityFeedback; suggestions: string[]; issues: string[]; timestamp: Date; feedbackProvider: string; } export interface QualityFeedback { accuracy: number; // 1-5 completeness: number; // 1-5 clarity: number; // 1-5 relevance: number; // 1-5 efficiency: number; // 1-5 } // Main Agent Ecosystem export class AgentEcosystem extends EventEmitter { private logger: Logger; private agents: Map<string, Agent> = new Map(); // private workflowOrchestrator: WorkflowOrchestrator; private toolOrchestrator: AdvancedToolOrchestrator; private ragSystem: VectorRAGSystem; private modelRouter: IntelligentModelRouter; private collaborationManager: CollaborationManager; private learningEngine: AgentLearningEngine; private performanceMonitor: AgentPerformanceMonitor; constructor( _workflowOrchestrator: WorkflowOrchestrator, toolOrchestrator: AdvancedToolOrchestrator, ragSystem: VectorRAGSystem, modelRouter: IntelligentModelRouter ) { super(); this.logger = new Logger({ level: 'info' }); // this.workflowOrchestrator = workflowOrchestrator; this.toolOrchestrator = toolOrchestrator; this.ragSystem = ragSystem; this.modelRouter = modelRouter; this.collaborationManager = new CollaborationManager(this); this.learningEngine = new AgentLearningEngine(); this.performanceMonitor = new AgentPerformanceMonitor(); } /** * Initialize the agent ecosystem */ async initialize(): Promise<void> { this.logger.info('Initializing Agent Ecosystem...'); try { // Create specialized agents await this.createSpecializedAgents(); // Initialize collaboration manager await this.collaborationManager.initialize(); // Start performance monitoring this.performanceMonitor.start(); this.logger.info('Agent Ecosystem initialized successfully'); this.emit('ecosystem:initialized'); } catch (error) { this.logger.error('Failed to initialize agent ecosystem:', error); throw error; } } /** * Process a request through the ecosystem */ async processRequest(request: AgentRequest): Promise<AgentResponse> { this.logger.info(`Processing request ${request.id} of type ${request.type}`); try { // Select optimal agent for the request const selectedAgent = await this.selectAgent(request); // Process the request const response = await selectedAgent.process(request); // Monitor performance this.performanceMonitor.recordRequest(request, response); // Check if collaboration is needed if (response.collaboration) { const collaborativeResponse = await this.handleCollaboration( response.collaboration, request ); return this.synthesizeCollaborativeResponse(response, collaborativeResponse); } this.emit('request:completed', { request, response }); return response; } catch (error) { this.logger.error(`Failed to process request ${request.id}:`, error); throw error; } } /** * Execute a collaborative task */ async executeCollaborativeTask(task: CollaborativeTask): Promise<CollaborativeResponse> { this.logger.info(`Executing collaborative task: ${task.title}`); return await this.collaborationManager.executeTask(task); } /** * Get agent by ID */ getAgent(agentId: string): Agent | undefined { return this.agents.get(agentId); } /** * Get all agents */ getAllAgents(): Agent[] { return Array.from(this.agents.values()); } /** * Get agents by role */ getAgentsByRole(role: string): Agent[] { return Array.from(this.agents.values()).filter(agent => agent.role.type === role); } /** * Get available agents */ getAvailableAgents(): Agent[] { return Array.from(this.agents.values()).filter( agent => agent.status.availability && agent.status.state !== 'offline' ); } /** * Add custom agent */ async addAgent(agent: Agent): Promise<void> { await agent.initialize(); this.agents.set(agent.id, agent); this.logger.info(`Added agent: ${agent.name} (${agent.role.type})`); this.emit('agent:added', agent); } /** * Remove agent */ async removeAgent(agentId: string): Promise<void> { const agent = this.agents.get(agentId); if (agent) { await agent.shutdown(); this.agents.delete(agentId); this.logger.info(`Removed agent: ${agent.name}`); this.emit('agent:removed', { agentId }); } } /** * Get ecosystem statistics */ getEcosystemStats(): EcosystemStats { const agents = Array.from(this.agents.values()); return { totalAgents: agents.length, activeAgents: agents.filter(a => a.status.state !== 'offline').length, agentsByRole: this.getAgentDistribution(), averageWorkload: this.calculateAverageWorkload(), performanceMetrics: this.performanceMonitor.getStats(), collaborationStats: this.collaborationManager.getStats(), learningProgress: this.learningEngine.getStats(), }; } /** * Shutdown the ecosystem */ async shutdown(): Promise<void> { this.logger.info('Shutting down agent ecosystem...'); // Shutdown all agents for (const agent of this.agents.values()) { try { await agent.shutdown(); } catch (error) { this.logger.warn(`Failed to shutdown agent ${agent.id}:`, error); } } // Shutdown components await this.collaborationManager.shutdown(); this.performanceMonitor.stop(); this.logger.info('Agent ecosystem shutdown completed'); } /** * Private Methods */ private async createSpecializedAgents(): Promise<void> { // Explorer Agent - File discovery and scanning const explorerAgent = new ExplorerAgent( 'explorer-001', this.ragSystem, this.toolOrchestrator, this.modelRouter ); await this.addAgent(explorerAgent); // Analyzer Agent - Deep code analysis const analyzerAgent = new AnalyzerAgent( 'analyzer-001', this.ragSystem, this.toolOrchestrator, this.modelRouter ); await this.addAgent(analyzerAgent); // Implementor Agent - Code generation and implementation const implementorAgent = new ImplementorAgent( 'implementor-001', this.ragSystem, this.toolOrchestrator, this.modelRouter ); await this.addAgent(implementorAgent); // Maintainer Agent - Code maintenance and refactoring const maintainerAgent = new MaintainerAgent( 'maintainer-001', this.ragSystem, this.toolOrchestrator, this.modelRouter ); await this.addAgent(maintainerAgent); // Security Agent - Security analysis and hardening const securityAgent = new SecurityAgent( 'security-001', this.ragSystem, this.toolOrchestrator, this.modelRouter ); await this.addAgent(securityAgent); // Optimizer Agent - Performance optimization const optimizerAgent = new OptimizerAgent( 'optimizer-001', this.ragSystem, this.toolOrchestrator, this.modelRouter ); await this.addAgent(optimizerAgent); // Tester Agent - Testing and quality assurance const testerAgent = new TesterAgent( 'tester-001', this.ragSystem, this.toolOrchestrator, this.modelRouter ); await this.addAgent(testerAgent); // Architect Agent - System architecture and design const architectAgent = new ArchitectAgent( 'architect-001', this.ragSystem, this.toolOrchestrator, this.modelRouter ); await this.addAgent(architectAgent); // Reviewer Agent - Code review and quality assessment const reviewerAgent = new ReviewerAgent( 'reviewer-001', this.ragSystem, this.toolOrchestrator, this.modelRouter ); await this.addAgent(reviewerAgent); } private async selectAgent(request: AgentRequest): Promise<Agent> { const availableAgents = this.getAvailableAgents(); // Simple selection based on request type const preferredRoles: Record<string, string> = { analysis: 'analyzer', implementation: 'implementor', review: 'reviewer', optimization: 'optimizer', testing: 'tester', documentation: 'maintainer', planning: 'architect', }; const preferredRole = preferredRoles[request.type]; let selectedAgent = availableAgents.find(agent => agent.role.type === preferredRole); // Fallback to any available agent if (!selectedAgent) { selectedAgent = availableAgents[0]; } if (!selectedAgent) { throw new Error('No available agents to handle the request'); } return selectedAgent; } private async handleCollaboration( collaborationRequest: CollaborationRequest, originalRequest: AgentRequest ): Promise<CollaborativeResponse> { // Create collaborative task const task: CollaborativeTask = { id: `collab_${Date.now()}`, title: `Collaborative ${collaborationRequest.type}`, description: collaborationRequest.content, type: originalRequest.type as any, complexity: 5, // Medium complexity participants: collaborationRequest.targetAgents, coordinator: 'system', phases: [], dependencies: [], deadline: originalRequest.deadline || new Date(), }; return await this.executeCollaborativeTask(task); } private synthesizeCollaborativeResponse( originalResponse: AgentResponse, collaborativeResponse: CollaborativeResponse ): AgentResponse { // Combine individual and collaborative responses return { ...originalResponse, content: collaborativeResponse.finalRecommendation, confidence: Math.max( originalResponse.confidence, collaborativeResponse.synthesis.confidenceScore ), reasoning: `${originalResponse.reasoning}\n\nCollaborative Analysis: ${collaborativeResponse.synthesis.finalOutput}`, }; } private getAgentDistribution(): Record<string, number> { const distribution: Record<string, number> = {}; for (const agent of this.agents.values()) { const role = agent.role.type; distribution[role] = (distribution[role] || 0) + 1; } return distribution; } private calculateAverageWorkload(): number { const agents = Array.from(this.agents.values()); if (agents.length === 0) return 0; const totalWorkload = agents.reduce((sum, agent) => sum + agent.status.workload, 0); return totalWorkload / agents.length; } } // Base Agent Implementation abstract class BaseAgent implements Agent { id: string; name: string; role: AgentRole; personality: AgentPersonality; capabilities: AgentCapability[]; expertise: ExpertiseDomain[]; status: AgentStatus; configuration: AgentConfiguration; protected logger: Logger; protected ragSystem: VectorRAGSystem; protected toolOrchestrator: AdvancedToolOrchestrator; protected modelRouter: IntelligentModelRouter; constructor( id: string, name: string, role: AgentRole, personality: AgentPersonality, ragSystem: VectorRAGSystem, toolOrchestrator: AdvancedToolOrchestrator, modelRouter: IntelligentModelRouter ) { this.id = id; this.name = name; this.role = role; this.personality = personality; this.ragSystem = ragSystem; this.toolOrchestrator = toolOrchestrator; this.modelRouter = modelRouter; this.logger = new Logger({ level: 'info' }); // Initialize default status this.status = { state: 'idle', workload: 0, availability: true, lastActivity: new Date(), health: { performance: 100, errorRate: 0, responseTime: 0, memoryUsage: 0, issueCount: 0, lastHealthCheck: new Date(), }, }; // Initialize default configuration this.configuration = this.getDefaultConfiguration(); this.capabilities = this.getDefaultCapabilities(); this.expertise = this.getDefaultExpertise(); } async initialize(): Promise<void> { this.logger.info(`Initializing agent: ${this.name}`); await this.customInitialization(); this.status.state = 'idle'; } abstract process(request: AgentRequest): Promise<AgentResponse>; async collaborate(agents: Agent[], task: CollaborativeTask): Promise<CollaborativeResponse> { try { // Default collaboration implementation using round-robin approach const responses: AgentResponse[] = []; const participatingAgents = agents.filter(agent => agent !== this); this.logger.info( `Starting collaboration with ${participatingAgents.length} agents for task: ${task.type}` ); const startTime = Date.now(); // Execute task with each participating agent for (const agent of participatingAgents) { try { const response = await (agent as any).process({ prompt: (task as any).prompt || task.description, context: (task as any).context, type: task.type, constraints: (task as any).constraints, }); responses.push({ id: `resp_${Date.now()}_${agent.id}`, requestId: (task as any).id || `task_${Date.now()}`, agentId: agent.id, content: response.content || response.result?.toString() || '', confidence: response.confidence || 0.8, reasoning: response.reasoning || `Response from ${(agent as any).type || 'unknown'} agent`, metadata: { processingTime: Date.now() - startTime, tokensUsed: 0, toolsUsed: [], modelsUsed: [(agent as any).model || 'unknown'], qualityScore: response.confidence || 0.8, complexity: 1, resources: { cpu: 0.1, memory: 0.1, cost: 0.01, apiCalls: 1, }, }, }); } catch (error) { this.logger.warn(`Agent ${agent.id} failed in collaboration:`, error); responses.push({ id: `resp_${Date.now()}_${agent.id}`, requestId: (task as any).id || `task_${Date.now()}`, agentId: agent.id, content: `Error: ${error instanceof Error ? error.message : String(error)}`, confidence: 0, reasoning: 'Agent execution failed', metadata: { processingTime: Date.now() - startTime, tokensUsed: 0, toolsUsed: [], modelsUsed: [], qualityScore: 0, complexity: 1, resources: { cpu: 0.1, memory: 0.1, cost: 0.01, apiCalls: 1, }, }, }); } } // Synthesize collaborative response const synthesizedContent = this.synthesizeResponses( responses, (task as any).synthesis || 'consensus' ); const averageConfidence = responses.reduce((sum, r) => sum + r.confidence, 0) / responses.length; return { taskId: (task as any).id || `task_${Date.now()}`, phases: responses.map(response => ({ phaseId: `phase_${response.agentId}`, agentId: response.agentId, result: response, quality: response.confidence, confidence: response.confidence, issues: response.confidence < 0.5 ? ['Low confidence response'] : [], })), synthesis: { approach: 'consensus' as const, weights: responses.reduce((acc, r) => ({ ...acc, [r.agentId]: r.confidence }), {}), conflicts: [], finalOutput: synthesizedContent, confidenceScore: averageConfidence, }, consensus: { agreement: averageConfidence, conflicts: responses.filter(r => r.confidence < 0.5).length, convergence: averageConfidence, stability: averageConfidence, }, finalRecommendation: synthesizedContent, metadata: { totalTime: responses.reduce((sum, r) => sum + (r.metadata?.processingTime || 0), 0), participationLevel: responses.reduce( (acc, r) => ({ ...acc, [r.agentId]: r.confidence }), {} ), communicationRounds: 1, decisionsReached: 1, escalationsRequired: 0, }, }; } catch (error) { throw new Error( `Collaboration failed: ${error instanceof Error ? error.message : String(error)}` ); } } private synthesizeResponses( responses: AgentResponse[], method: 'consensus' | 'best' | 'merge' ): string { if (responses.length === 0) { return 'No responses available for synthesis'; } switch (method) { case 'best': { // Return the response with highest confidence const bestResponse = responses.reduce((best, current) => current.confidence > best.confidence ? current : best ); return bestResponse.content; } case 'merge': // Merge all responses with separators return responses.map(r => `**${r.agentId}**: ${r.content}`).join('\n\n---\n\n'); case 'consensus': default: { // Simple consensus: use majority approach or highest confidence if (responses.length === 1) { return responses[0]?.content || ''; } // For multiple responses, combine them intelligently const highConfidenceResponses = responses.filter(r => r.confidence > 0.7); if (highConfidenceResponses.length > 0) { return highConfidenceResponses.map(r => r.content).join('\n\n'); } // Fallback to best response return responses.reduce((best, current) => current.confidence > best.confidence ? current : best ).content; } } } async learn(feedback: AgentFeedback): Promise<void> { // Basic learning implementation this.logger.debug(`Received feedback for request ${feedback.requestId}: ${feedback.rating}/5`); // Update expertise based on feedback this.updateExpertiseFromFeedback(feedback); } async shutdown(): Promise<void> { this.logger.info(`Shutting down agent: ${this.name}`); this.status.state = 'offline'; await this.customShutdown(); } protected abstract customInitialization(): Promise<void>; protected abstract customShutdown(): Promise<void>; protected abstract getDefaultCapabilities(): AgentCapability[]; protected abstract getDefaultExpertise(): ExpertiseDomain[]; protected getDefaultConfiguration(): AgentConfiguration { return { modelPreferences: [ { providerId: 'ollama', modelId: 'codellama:34b', priority: 1, useCase: ['analysis', 'reasoning'], configuration: {}, }, ], behaviorSettings: { verbosity: 'normal', responseStyle: 'explanatory', errorHandling: 'adaptive', optimizationLevel: 'balanced', }, collaborationSettings: { preferredTeamSize: 3, leadershipStyle: 'situational', communicationFrequency: 'regular', conflictResolution: 'consensus', }, learningSettings: { adaptationRate: 0.1, feedbackSensitivity: 0.8, explorationRate: 0.2, memoryRetention: 30, learningMethods: ['feedback', 'observation', 'experimentation'], }, resourceLimits: { maxMemoryUsage: 512, maxProcessingTime: 300, maxConcurrentTasks: 3, maxToolsPerTask: 10, costBudget: 1.0, }, }; } protected updateExpertiseFromFeedback(feedback: AgentFeedback): void { // Simple expertise update based on feedback // In production, this would be more sophisticated for (const domain of this.expertise) { if (feedback.rating >= 4) { domain.level = Math.min(100, domain.level + 1); } else if (feedback.rating <= 2) { domain.level = Math.max(0, domain.level - 1); } } } protected async generateResponse( request: AgentRequest, analysis: string, actions?: AgentAction[] ): Promise<AgentResponse> { const response: AgentResponse = { id: `response_${Date.now()}`, requestId: request.id, agentId: this.id, content: analysis, confidence: 0.8, // Default confidence reasoning: `Processed as ${this.role.type} with ${this.personality.approach} approach`, metadata: { processingTime: 0, tokensUsed: 0, toolsUsed: [], modelsUsed: [], qualityScore: 0.8, complexity: this.assessComplexity(request), resources: { cpu: 0, memory: 0, cost: 0, apiCalls: 0, }, }, actions: actions || [], }; return response; } protected assessComplexity(request: AgentRequest): number { // Simple complexity assessment let complexity = 0.5; if (request.content.length > 1000) complexity += 0.2; if (request.context?.codebase?.complexity) { complexity += request.context.codebase.complexity * 0.3; } if (request.priority === 'critical') complexity += 0.1; return Math.min(1.0, complexity); } } // Specialized Agent Implementations class ExplorerAgent extends BaseAgent { constructor( id: string, ragSystem: VectorRAGSystem, toolOrchestrator: AdvancedToolOrchestrator, modelRouter: IntelligentModelRouter ) { super( id, 'Code Explorer', { type: 'explorer', description: 'Discovers and maps code structures, dependencies, and patterns', responsibilities: [ 'file discovery', 'dependency analysis', 'pattern recognition', 'code mapping', ], authority: 'advisory', scope: 'project', }, { approach: 'methodical', communication: 'detailed', riskTolerance: 'low', decisionStyle: 'deliberate', learningStyle: 'observational', }, ragSystem, toolOrchestrator, modelRouter ); } async process(request: AgentRequest): Promise<AgentResponse> { this.status.state = 'busy'; try { // Explorer-specific processing logic const analysis = await this.exploreCodebase(request); const actions = await this.generateExplorationActions(request); return await this.generateResponse(request, analysis, actions); } finally { this.status.state = 'idle'; } } protected async customInitialization(): Promise<void> { // Explorer-specific initialization } protected async customShutdown(): Promise<void> { // Explorer-specific cleanup } protected getDefaultCapabilities(): AgentCapability[] { return [ { name: 'file_discovery', level: 'expert', description: 'Discover and catalog files in a codebase', tools: ['file_scanner', 'dependency_analyzer'], learnable: true, }, { name: 'pattern_recognition', level: 'expert', description: 'Identify architectural and code patterns', tools: ['ast_analyzer', 'pattern_matcher'], learnable: true, }, ]; } protected getDefaultExpertise(): ExpertiseDomain[] { return [ { area: 'code_exploration', level: 90, technologies: ['git', 'ast', 'static_analysis'], frameworks: ['typescript', 'javascript', 'python'], patterns: ['mvc', 'repository', 'factory'], experience: [], }, ]; } private async exploreCodebase(request: AgentRequest): Promise<string> { // Implementation would perform actual codebase exploration return `Explored codebase structure for: ${request.content}`; } // eslint-disable-next-line @typescript-eslint/no-unused-vars private async generateExplorationActions(_request: AgentRequest): Promise<AgentAction[]> { return [ { type: 'analysis_run', target: 'codebase', parameters: { type: 'structure_analysis' }, reversible: true, }, ]; } } class AnalyzerAgent extends BaseAgent { constructor( id: string, ragSystem: VectorRAGSystem, toolOrchestrator: AdvancedToolOrchestrator, modelRouter: IntelligentModelRouter ) { super( id, 'Code Analyzer', { type: 'analyzer', description: 'Performs deep analysis of code quality, complexity, and issues', responsibilities: [ 'quality analysis', 'complexity assessment', 'issue detection', 'metrics calculation', ], authority: 'advisory', scope: 'project', }, { approach: 'methodical', communication: 'analytical', riskTolerance: 'medium', decisionStyle: 'deliberate', learningStyle: 'theoretical', }, ragSystem, toolOrchestrator, modelRouter ); } async process(request: AgentRequest): Promise<AgentResponse> { this.status.state = 'busy'; try { const analysis = await this.analyzeCode(request); const actions = await this.generateAnalysisActions(request); return await this.generateResponse(request, analysis, actions); } finally { this.status.state = 'idle'; } } protected async customInitialization(): Promise<void> { // Analyzer-specific initialization } protected async customShutdown(): Promise<void> { // Analyzer-specific cleanup } protected getDefaultCapabilities(): AgentCapability[] { return [ { name: 'quality_analysis', level: 'expert', description: 'Analyze code quality and identify issues', tools: ['linter', 'complexity_analyzer', 'security_scanner'], learnable: true, }, { name: 'performance_analysis', level: 'expert', description: 'Identify performance bottlenecks and optimization opportunities', tools: ['profiler', 'benchmarker', 'memory_analyzer'], learnable: true, }, ]; } protected getDefaultExpertise(): ExpertiseDomain[] { return [ { area: 'code_analysis', level: 95, technologies: ['static_analysis', 'dynamic_analysis', 'profiling'], frameworks: ['eslint', 'sonarqube', 'codecov'], patterns: ['solid', 'clean_code', 'design_patterns'], experience: [], }, ]; } private async analyzeCode(request: AgentRequest): Promise<string> { // Implementation would perform actual code analysis return `Analyzed code for: ${request.content}`; } // eslint-disable-next-line @typescript-eslint/no-unused-vars private async generateAnalysisActions(_request: AgentRequest): Promise<AgentAction[]> { return [ { type: 'analysis_run', target: 'code', parameters: { type: 'quality_analysis' }, reversible: true, }, ]; } } // Additional specialized agents would be implemented similarly... class ImplementorAgent extends BaseAgent { constructor( id: string, ragSystem: VectorRAGSystem, toolOrchestrator: AdvancedToolOrchestrator, modelRouter: IntelligentModelRouter ) { super( id, 'Code Implementor', { type: 'implementor', description: 'Generates and implements code solutions', responsibilities: ['code generation', 'feature implementation', 'bug fixes', 'prototyping'], authority: 'implementation', scope: 'local', }, { approach: 'pragmatic', communication: 'concise', riskTolerance: 'medium', decisionStyle: 'quick', learningStyle: 'experiential', }, ragSystem, toolOrchestrator, modelRouter ); } async process(request: AgentRequest): Promise<AgentResponse> { this.status.state = 'busy'; try { const implementation = await this.generateImplementation(request); const actions = await this.generateImplementationActions(request); return await this.generateResponse(request, implementation, actions); } finally { this.status.state = 'idle'; } } protected async customInitialization(): Promise<void> {} protected async customShutdown(): Promise<void> {} protected getDefaultCapabilities(): AgentCapability[] { return [ { name: 'code_generation', level: 'expert', description: 'Generate high-quality code solutions', tools: ['code_generator', 'template_engine', 'scaffolder'], learnable: true, }, ]; } protected getDefaultExpertise(): ExpertiseDomain[] { return [ { area: 'software_implementation', level: 88, technologies: ['typescript', 'javascript', 'python', 'go'], frameworks: ['react', 'node', 'express', 'fastapi'], patterns: ['mvc', 'repository', 'factory', 'observer'], experience: [], }, ]; } private async generateImplementation(request: AgentRequest): Promise<string> { return `Generated implementation for: ${request.content}`; } // eslint-disable-next-line @typescript-eslint/no-unused-vars private async generateImplementationActions(_request: AgentRequest): Promise<AgentAction[]> { return [ { type: 'file_create', target: 'implementation.ts', parameters: { content: 'generated code' }, reversible: true, }, ]; } } class MaintainerAgent extends BaseAgent { constructor( id: string, ragSystem: VectorRAGSystem, toolOrchestrator: AdvancedToolOrchestrator, modelRouter: IntelligentModelRouter ) { super( id, 'Code Maintainer', { type: 'maintainer', description: 'Maintains and refactors existing code', responsibilities: ['refactoring', 'documentation', 'dependency updates', 'code cleanup'], authority: 'implementation', scope: 'project', }, { approach: 'conservative', communication: 'detailed', riskTolerance: 'low', decisionStyle: 'deliberate', learningStyle: 'observational', }, ragSystem, toolOrchestrator, modelRouter ); } async process(request: AgentRequest): Promise<AgentResponse> { this.status.state = 'busy'; try { const maintenance = await this.performMaintenance(request); const actions = await this.generateMaintenanceActions(request); return await this.generateResponse(request, maintenance, actions); } finally { this.status.state = 'idle'; } } protected async customInitialization(): Promise<void> {} protected async customShutdown(): Promise<void> {} protected getDefaultCapabilities(): AgentCapability[] { return [ { name: 'refactoring', level: 'expert', description: 'Refactor code while preserving functionality', tools: ['refactoring_engine', 'test_runner', 'dependency_updater'], learnable: true, }, ]; } protected getDefaultExpertise(): ExpertiseDomain[] { return [ { area: 'code_maintenance', level: 85, technologies: ['refactoring', 'legacy_systems', 'migration'], frameworks: ['jest', 'mocha', 'pytest'], patterns: ['refactoring_patterns', 'legacy_patterns'], experience: [], }, ]; } private async performMaintenance(request: AgentRequest): Promise<string> { return `Performed maintenance for: ${request.content}`; } // eslint-disable-next-line @typescript-eslint/no-unused-vars private async generateMaintenanceActions(_request: AgentRequest): Promise<AgentAction[]> { return [ { type: 'file_modify', target: 'legacy_file.ts', parameters: { refactor: true }, reversible: true, }, ]; } } class SecurityAgent extends BaseAgent { constructor( id: string, ragSystem: VectorRAGSystem, toolOrchestrator: AdvancedToolOrchestrator, modelRouter: IntelligentModelRouter ) { super( id, 'Security Specialist', { type: 'security', description: 'Analyzes and improves security aspects of code', responsibilities: [ 'vulnerability scanning', 'security hardening', 'compliance checking', 'threat modeling', ], authority: 'advisory', scope: 'system', }, { approach: 'perfectionist', communication: 'technical', riskTolerance: 'low', decisionStyle: 'deliberate', learningStyle: 'theoretical', }, ragSystem, toolOrchestrator, modelRouter ); } async process(request: AgentRequest): Promise<AgentResponse> { this.status.state = 'busy'; try { const securityAnalysis = await this.analyzeSecurity(request); const actions = await this.generateSecurityActions(request); return await this.generateResponse(request, securityAnalysis, actions); } finally { this.status.state = 'idle'; } } protected async customInitialization(): Promise<void> {} protected async customShutdown(): Promise<void> {} protected getDefaultCapabilities(): AgentCapability[] { return [ { name: 'vulnerability_detection', level: 'expert', description: 'Detect security vulnerabilities in code', tools: ['security_scanner', 'sast_tools', 'dependency_checker'], learnable: true, }, ]; } protected getDefaultExpertise(): ExpertiseDomain[] { return [ { area: 'cybersecurity', level: 92, technologies: ['owasp', 'sast', 'dast', 'penetration_testing'], frameworks: ['snyk', 'sonarqube', 'checkmarx'], patterns: ['secure_coding', 'authentication', 'authorization'], experience: [], }, ]; } private async analyzeSecurity(request: AgentRequest): Promise<string> { return `Performed security analysis for: ${request.content}`; } // eslint-disable-next-line @typescript-eslint/no-unused-vars private async generateSecurityActions(_request: AgentRequest): Promise<AgentAction[]> { return [ { type: 'analysis_run', target: 'security_scan', parameters: { type: 'vulnerability_scan' }, reversible: true, }, ]; } } class OptimizerAgent extends BaseAgent { constructor( id: string, ragSystem: VectorRAGSystem, toolOrchestrator: AdvancedToolOrchestrator, modelRouter: IntelligentModelRouter ) { super( id, 'Performance Optimizer', { type: 'optimizer', description: 'Optimizes code and system performance', responsibilities: [ 'performance tuning', 'resource optimization', 'bottleneck identification', 'scaling recommendations', ], authority: 'implementation', scope: 'system', }, { approach: 'innovative', communication: 'technical', riskTolerance: 'medium', decisionStyle: 'quick', learningStyle: 'experiential', }, ragSystem, toolOrchestrator, modelRouter ); } async process(request: AgentRequest): Promise<AgentResponse> { this.status.state = 'busy'; try { const optimization = await this.optimizePerformance(request); const actions = await this.generateOptimizationActions(request); return await this.generateResponse(request, optimization, actions); } finally { this.status.state = 'idle'; } } protected async customInitialization(): Promise<void> {} protected async customShutdown(): Promise<void> {} protected getDefaultCapabilities(): AgentCapability[] { return [ { name: 'performance_optimization', level: 'expert', description: 'Optimize system and code performance', tools: ['profiler', 'benchmarker', 'optimizer'], learnable: true, }, { name: 'memory_management', level: 'expert', description: 'Detect and prevent memory leaks', tools: ['memory_profiler', 'gc_analyzer', 'leak_detector'], learnable: true, }, { name: 'algorithm_optimization', level: 'expert', description: 'Optimize algorithms and data structures', tools: ['complexity_analyzer', 'benchmark_suite', 'profiler'], learnable: true, }, { name: 'async_optimization', level: 'expert', description: 'Optimize asynchronous operations', tools: ['concurrency_analyzer', 'event_loop_monitor', 'promise_tracker'], learnable: true, }, ]; } protected getDefaultExpertise(): ExpertiseDomain[] { return [ { area: 'performance_engineering', level: 87, technologies: ['profiling', 'benchmarking', 'caching', 'optimization'], frameworks: ['performance_monitoring', 'apm_tools'], patterns: ['caching_patterns', 'optimization_patterns'], experience: [], }, ]; } private async optimizePerformance(request: AgentRequest): Promise<string> { try { // Analyze the request content for performance optimization opportunities const performanceAnalysis = await this.analyzePerformance(request.content); // Generate optimization recommendations const optimizations = []; // Check for common performance issues if (performanceAnalysis.hasMemoryLeaks) { optimizations.push('Memory leak detection and prevention'); } if (performanceAnalysis.hasInefficientLoops) { optimizations.push('Loop optimization and algorithmic improvements'); } if (performanceAnalysis.hasBlockingOperations) { optimizations.push('Async/await optimization for non-blocking operations'); } if (performanceAnalysis.hasCachingOpportunities) { optimizations.push('Caching strategy implementation'); } if (performanceAnalysis.hasLargePayloads) { optimizations.push('Data compression and payload optimization'); } return `Performance optimization analysis complete:\n${optimizations.map(opt => `• ${opt}`).join('\n')}`; } catch (error) { return `Performance optimization failed: ${error instanceof Error ? error.message : 'Unknown error'}`; } } private async analyzePerformance(content: string): Promise<any> { const analysis = { hasMemoryLeaks: false, hasInefficientLoops: false, hasBlockingOperations: false, hasCachingOpportunities: false, hasLargePayloads: false, }; // Check for memory leak patterns if ( /new\s+\w+|setInterval|addEventListener/gi.test(content) && !/cleanup|dispose|removeEventListener|clearInterval/gi.test(content) ) { analysis.hasMemoryLeaks = true; } // Check for inefficient loops if (/for\s*\([^)]*\.[^)]*length[^)]*\)|while\s*\([^)]*\.[^)]*length[^)]*\)/gi.test(content)) { analysis.hasInefficientLoops = true; } // Check for blocking operations if (/\.readFileSync|sleep\(|setTimeout\s*\([^,]*,\s*[5-9]\d{3,}/gi.test(content)) { analysis.hasBlockingOperations = true; } // Check for caching opportunities if ( /fetch\(|axios\.|http\.|database\.|query\(/gi.test(content) && !/cache|memoize|store/gi.test(content) ) { analysis.hasCachingOpportunities = true; } // Check for large payloads if (/JSON\.stringify|response\.data|largeObject/gi.test(content)) { analysis.hasLargePayloads = true; } return analysis; } private async generateOptimizationActions(request: AgentRequest): Promise<AgentAction[]> { const actions: AgentAction[] = []; try { const performanceAnalysis = await this.analyzePerformance(request.content); // Generate specific optimization actions based on analysis if (performanceAnalysis.hasMemoryLeaks) { actions.push({ type: 'file_modify', target: 'memory-optimization.ts', parameters: { optimization: 'memory_leak_prevention', techniques: ['weak_references', 'disposal_patterns', 'gc_optimization'], }, reversible: true, }); } if (performanceAnalysis.hasInefficientLoops) { actions.push({ type: