codecrucible-synth
Version:
Production-Ready AI Development Platform with Multi-Voice Synthesis, Smithery MCP Integration, Enterprise Security, and Zero-Timeout Reliability
1,767 lines (1,575 loc) • 67.1 kB
text/typescript
/**
* Agent Ecosystem for CodeCrucible Synth
* Production-ready specialized agents based on the multi-voice synthesis architecture
* Each agent represents a different perspective and expertise domain
*/
import { EventEmitter } from 'events';
import { Logger } from '../logger.js';
// import { UnifiedModelClient } from '../../refactor/unified-model-client.js';
import { WorkflowOrchestrator } from '../workflow/workflow-orchestrator.js';
import { AdvancedToolOrchestrator } from '../tools/advanced-tool-orchestrator.js';
import { VectorRAGSystem } from '../rag/vector-rag-system.js';
import { IntelligentModelRouter } from '../routing/intelligent-model-router.js';
// Core Agent Interfaces
export interface Agent {
id: string;
name: string;
role: AgentRole;
personality: AgentPersonality;
capabilities: AgentCapability[];
expertise: ExpertiseDomain[];
status: AgentStatus;
configuration: AgentConfiguration;
// Core methods
initialize(): Promise<void>;
process(request: AgentRequest): Promise<AgentResponse>;
collaborate(agents: Agent[], task: CollaborativeTask): Promise<CollaborativeResponse>;
learn(feedback: AgentFeedback): Promise<void>;
shutdown(): Promise<void>;
}
export interface AgentRole {
type:
| 'explorer'
| 'analyzer'
| 'implementor'
| 'maintainer'
| 'security'
| 'optimizer'
| 'tester'
| 'architect'
| 'reviewer';
description: string;
responsibilities: string[];
authority: 'advisory' | 'decision-making' | 'implementation' | 'review';
scope: 'local' | 'project' | 'system' | 'global';
}
export interface AgentPersonality {
approach:
| 'methodical'
| 'creative'
| 'pragmatic'
| 'perfectionist'
| 'innovative'
| 'conservative'
| 'aggressive';
communication: 'detailed' | 'concise' | 'technical' | 'narrative' | 'analytical';
riskTolerance: 'low' | 'medium' | 'high';
decisionStyle: 'quick' | 'deliberate' | 'collaborative' | 'independent';
learningStyle: 'experiential' | 'theoretical' | 'collaborative' | 'observational';
}
export interface AgentCapability {
name: string;
level: 'novice' | 'intermediate' | 'expert' | 'master';
description: string;
tools: string[];
prerequisites?: string[];
learnable: boolean;
}
export interface ExpertiseDomain {
area: string;
level: number; // 0-100
technologies: string[];
frameworks: string[];
patterns: string[];
experience: ExperienceMetric[];
}
export interface ExperienceMetric {
task: string;
successRate: number;
avgQuality: number;
timeSpent: number;
complexity: number;
lastPerformed: Date;
}
export interface AgentStatus {
state: 'idle' | 'busy' | 'learning' | 'collaborating' | 'offline' | 'error';
currentTask?: string;
workload: number; // 0-100
availability: boolean;
lastActivity: Date;
health: AgentHealth;
}
export interface AgentHealth {
performance: number; // 0-100
errorRate: number;
responseTime: number;
memoryUsage: number;
issueCount: number;
lastHealthCheck: Date;
}
export interface AgentConfiguration {
modelPreferences: ModelPreference[];
behaviorSettings: BehaviorSettings;
collaborationSettings: CollaborationSettings;
learningSettings: LearningSettings;
resourceLimits: ResourceLimits;
}
export interface ModelPreference {
providerId: string;
modelId: string;
priority: number;
useCase: string[];
configuration: Record<string, any>;
}
export interface BehaviorSettings {
verbosity: 'minimal' | 'normal' | 'detailed' | 'verbose';
responseStyle: 'direct' | 'explanatory' | 'tutorial' | 'conversational';
errorHandling: 'strict' | 'permissive' | 'adaptive';
optimizationLevel: 'speed' | 'quality' | 'balanced';
}
export interface CollaborationSettings {
preferredTeamSize: number;
leadershipStyle: 'democratic' | 'authoritative' | 'laissez-faire' | 'situational';
communicationFrequency: 'minimal' | 'regular' | 'frequent' | 'continuous';
conflictResolution: 'consensus' | 'voting' | 'authority' | 'escalation';
}
export interface LearningSettings {
adaptationRate: number; // 0-1
feedbackSensitivity: number; // 0-1
explorationRate: number; // 0-1
memoryRetention: number; // days
learningMethods: string[];
}
export interface ResourceLimits {
maxMemoryUsage: number; // MB
maxProcessingTime: number; // seconds
maxConcurrentTasks: number;
maxToolsPerTask: number;
costBudget: number;
}
export interface AgentRequest {
id: string;
type:
| 'analysis'
| 'implementation'
| 'review'
| 'optimization'
| 'testing'
| 'documentation'
| 'planning';
content: string;
context?: AgentContext;
constraints?: AgentConstraints;
priority: 'low' | 'medium' | 'high' | 'critical';
deadline?: Date;
requester: string;
}
export interface AgentContext {
project?: ProjectContext;
codebase?: CodebaseContext;
session?: SessionContext;
previous?: PreviousInteraction[];
environment?: EnvironmentContext;
}
export interface ProjectContext {
name: string;
type: string;
technologies: string[];
architecture: string;
conventions: Record<string, any>;
constraints: string[];
}
export interface CodebaseContext {
languages: string[];
frameworks: string[];
patterns: string[];
size: number;
complexity: number;
quality: number;
coverage: number;
}
export interface SessionContext {
sessionId: string;
duration: number;
interactions: number;
mood: 'positive' | 'neutral' | 'frustrated' | 'confused';
goals: string[];
}
export interface PreviousInteraction {
timestamp: Date;
request: string;
response: string;
outcome: 'success' | 'partial' | 'failure';
feedback?: string;
}
export interface EnvironmentContext {
os: string;
tools: string[];
resources: ResourceAvailability;
constraints: string[];
}
export interface ResourceAvailability {
cpu: number;
memory: number;
disk: number;
network: number;
}
export interface AgentConstraints {
timeLimit?: number;
memoryLimit?: number;
costLimit?: number;
qualityThreshold?: number;
approvedTools?: string[];
forbiddenActions?: string[];
}
export interface AgentResponse {
id: string;
requestId: string;
agentId: string;
content: string;
confidence: number; // 0-1
reasoning: string;
suggestions?: string[];
alternatives?: string[];
warnings?: string[];
metadata: ResponseMetadata;
actions?: AgentAction[];
collaboration?: CollaborationRequest;
}
export interface ResponseMetadata {
processingTime: number;
tokensUsed: number;
toolsUsed: string[];
modelsUsed: string[];
qualityScore: number;
complexity: number;
resources: ResourceUsage;
}
export interface ResourceUsage {
cpu: number;
memory: number;
cost: number;
apiCalls: number;
}
export interface AgentAction {
type:
| 'file_create'
| 'file_modify'
| 'file_delete'
| 'command_execute'
| 'analysis_run'
| 'test_run';
target: string;
parameters: Record<string, any>;
confirmation?: boolean;
reversible: boolean;
}
export interface CollaborationRequest {
type: 'review' | 'assistance' | 'validation' | 'brainstorm' | 'implementation';
targetAgents: string[];
content: string;
urgency: 'low' | 'medium' | 'high';
}
export interface CollaborativeTask {
id: string;
title: string;
description: string;
type: 'analysis' | 'implementation' | 'review' | 'architecture' | 'optimization';
complexity: number;
participants: string[];
coordinator: string;
phases: TaskPhase[];
dependencies: string[];
deadline?: Date;
}
export interface TaskPhase {
id: string;
name: string;
description: string;
assignedAgent: string;
dependencies: string[];
estimatedDuration: number;
status: 'pending' | 'in_progress' | 'completed' | 'blocked';
deliverables: string[];
}
export interface CollaborativeResponse {
taskId: string;
phases: PhaseResult[];
synthesis: CollaborativeSynthesis;
consensus: ConsensusMeasure;
finalRecommendation: string;
metadata: CollaborativeMetadata;
}
export interface PhaseResult {
phaseId: string;
agentId: string;
result: AgentResponse;
quality: number;
confidence: number;
issues?: string[];
}
export interface CollaborativeSynthesis {
approach: 'consensus' | 'best_of' | 'hybrid' | 'weighted_average';
weights: Record<string, number>;
conflicts: ConflictResolution[];
finalOutput: string;
confidenceScore: number;
}
export interface ConflictResolution {
issue: string;
positions: Array<{ agent: string; position: string; reasoning: string }>;
resolution: string;
method: 'voting' | 'authority' | 'compromise' | 'expert_decision';
}
export interface ConsensusMeasure {
agreement: number; // 0-1
conflicts: number;
convergence: number; // 0-1
stability: number; // 0-1
}
export interface CollaborativeMetadata {
totalTime: number;
participationLevel: Record<string, number>;
communicationRounds: number;
decisionsReached: number;
escalationsRequired: number;
}
export interface AgentFeedback {
requestId: string;
responseId: string;
rating: number; // 1-5
qualityAspects: QualityFeedback;
suggestions: string[];
issues: string[];
timestamp: Date;
feedbackProvider: string;
}
export interface QualityFeedback {
accuracy: number; // 1-5
completeness: number; // 1-5
clarity: number; // 1-5
relevance: number; // 1-5
efficiency: number; // 1-5
}
// Main Agent Ecosystem
export class AgentEcosystem extends EventEmitter {
private logger: Logger;
private agents: Map<string, Agent> = new Map();
// private workflowOrchestrator: WorkflowOrchestrator;
private toolOrchestrator: AdvancedToolOrchestrator;
private ragSystem: VectorRAGSystem;
private modelRouter: IntelligentModelRouter;
private collaborationManager: CollaborationManager;
private learningEngine: AgentLearningEngine;
private performanceMonitor: AgentPerformanceMonitor;
constructor(
_workflowOrchestrator: WorkflowOrchestrator,
toolOrchestrator: AdvancedToolOrchestrator,
ragSystem: VectorRAGSystem,
modelRouter: IntelligentModelRouter
) {
super();
this.logger = new Logger({ level: 'info' });
// this.workflowOrchestrator = workflowOrchestrator;
this.toolOrchestrator = toolOrchestrator;
this.ragSystem = ragSystem;
this.modelRouter = modelRouter;
this.collaborationManager = new CollaborationManager(this);
this.learningEngine = new AgentLearningEngine();
this.performanceMonitor = new AgentPerformanceMonitor();
}
/**
* Initialize the agent ecosystem
*/
async initialize(): Promise<void> {
this.logger.info('Initializing Agent Ecosystem...');
try {
// Create specialized agents
await this.createSpecializedAgents();
// Initialize collaboration manager
await this.collaborationManager.initialize();
// Start performance monitoring
this.performanceMonitor.start();
this.logger.info('Agent Ecosystem initialized successfully');
this.emit('ecosystem:initialized');
} catch (error) {
this.logger.error('Failed to initialize agent ecosystem:', error);
throw error;
}
}
/**
* Process a request through the ecosystem
*/
async processRequest(request: AgentRequest): Promise<AgentResponse> {
this.logger.info(`Processing request ${request.id} of type ${request.type}`);
try {
// Select optimal agent for the request
const selectedAgent = await this.selectAgent(request);
// Process the request
const response = await selectedAgent.process(request);
// Monitor performance
this.performanceMonitor.recordRequest(request, response);
// Check if collaboration is needed
if (response.collaboration) {
const collaborativeResponse = await this.handleCollaboration(
response.collaboration,
request
);
return this.synthesizeCollaborativeResponse(response, collaborativeResponse);
}
this.emit('request:completed', { request, response });
return response;
} catch (error) {
this.logger.error(`Failed to process request ${request.id}:`, error);
throw error;
}
}
/**
* Execute a collaborative task
*/
async executeCollaborativeTask(task: CollaborativeTask): Promise<CollaborativeResponse> {
this.logger.info(`Executing collaborative task: ${task.title}`);
return await this.collaborationManager.executeTask(task);
}
/**
* Get agent by ID
*/
getAgent(agentId: string): Agent | undefined {
return this.agents.get(agentId);
}
/**
* Get all agents
*/
getAllAgents(): Agent[] {
return Array.from(this.agents.values());
}
/**
* Get agents by role
*/
getAgentsByRole(role: string): Agent[] {
return Array.from(this.agents.values()).filter(agent => agent.role.type === role);
}
/**
* Get available agents
*/
getAvailableAgents(): Agent[] {
return Array.from(this.agents.values()).filter(
agent => agent.status.availability && agent.status.state !== 'offline'
);
}
/**
* Add custom agent
*/
async addAgent(agent: Agent): Promise<void> {
await agent.initialize();
this.agents.set(agent.id, agent);
this.logger.info(`Added agent: ${agent.name} (${agent.role.type})`);
this.emit('agent:added', agent);
}
/**
* Remove agent
*/
async removeAgent(agentId: string): Promise<void> {
const agent = this.agents.get(agentId);
if (agent) {
await agent.shutdown();
this.agents.delete(agentId);
this.logger.info(`Removed agent: ${agent.name}`);
this.emit('agent:removed', { agentId });
}
}
/**
* Get ecosystem statistics
*/
getEcosystemStats(): EcosystemStats {
const agents = Array.from(this.agents.values());
return {
totalAgents: agents.length,
activeAgents: agents.filter(a => a.status.state !== 'offline').length,
agentsByRole: this.getAgentDistribution(),
averageWorkload: this.calculateAverageWorkload(),
performanceMetrics: this.performanceMonitor.getStats(),
collaborationStats: this.collaborationManager.getStats(),
learningProgress: this.learningEngine.getStats(),
};
}
/**
* Shutdown the ecosystem
*/
async shutdown(): Promise<void> {
this.logger.info('Shutting down agent ecosystem...');
// Shutdown all agents
for (const agent of this.agents.values()) {
try {
await agent.shutdown();
} catch (error) {
this.logger.warn(`Failed to shutdown agent ${agent.id}:`, error);
}
}
// Shutdown components
await this.collaborationManager.shutdown();
this.performanceMonitor.stop();
this.logger.info('Agent ecosystem shutdown completed');
}
/**
* Private Methods
*/
private async createSpecializedAgents(): Promise<void> {
// Explorer Agent - File discovery and scanning
const explorerAgent = new ExplorerAgent(
'explorer-001',
this.ragSystem,
this.toolOrchestrator,
this.modelRouter
);
await this.addAgent(explorerAgent);
// Analyzer Agent - Deep code analysis
const analyzerAgent = new AnalyzerAgent(
'analyzer-001',
this.ragSystem,
this.toolOrchestrator,
this.modelRouter
);
await this.addAgent(analyzerAgent);
// Implementor Agent - Code generation and implementation
const implementorAgent = new ImplementorAgent(
'implementor-001',
this.ragSystem,
this.toolOrchestrator,
this.modelRouter
);
await this.addAgent(implementorAgent);
// Maintainer Agent - Code maintenance and refactoring
const maintainerAgent = new MaintainerAgent(
'maintainer-001',
this.ragSystem,
this.toolOrchestrator,
this.modelRouter
);
await this.addAgent(maintainerAgent);
// Security Agent - Security analysis and hardening
const securityAgent = new SecurityAgent(
'security-001',
this.ragSystem,
this.toolOrchestrator,
this.modelRouter
);
await this.addAgent(securityAgent);
// Optimizer Agent - Performance optimization
const optimizerAgent = new OptimizerAgent(
'optimizer-001',
this.ragSystem,
this.toolOrchestrator,
this.modelRouter
);
await this.addAgent(optimizerAgent);
// Tester Agent - Testing and quality assurance
const testerAgent = new TesterAgent(
'tester-001',
this.ragSystem,
this.toolOrchestrator,
this.modelRouter
);
await this.addAgent(testerAgent);
// Architect Agent - System architecture and design
const architectAgent = new ArchitectAgent(
'architect-001',
this.ragSystem,
this.toolOrchestrator,
this.modelRouter
);
await this.addAgent(architectAgent);
// Reviewer Agent - Code review and quality assessment
const reviewerAgent = new ReviewerAgent(
'reviewer-001',
this.ragSystem,
this.toolOrchestrator,
this.modelRouter
);
await this.addAgent(reviewerAgent);
}
private async selectAgent(request: AgentRequest): Promise<Agent> {
const availableAgents = this.getAvailableAgents();
// Simple selection based on request type
const preferredRoles: Record<string, string> = {
analysis: 'analyzer',
implementation: 'implementor',
review: 'reviewer',
optimization: 'optimizer',
testing: 'tester',
documentation: 'maintainer',
planning: 'architect',
};
const preferredRole = preferredRoles[request.type];
let selectedAgent = availableAgents.find(agent => agent.role.type === preferredRole);
// Fallback to any available agent
if (!selectedAgent) {
selectedAgent = availableAgents[0];
}
if (!selectedAgent) {
throw new Error('No available agents to handle the request');
}
return selectedAgent;
}
private async handleCollaboration(
collaborationRequest: CollaborationRequest,
originalRequest: AgentRequest
): Promise<CollaborativeResponse> {
// Create collaborative task
const task: CollaborativeTask = {
id: `collab_${Date.now()}`,
title: `Collaborative ${collaborationRequest.type}`,
description: collaborationRequest.content,
type: originalRequest.type as any,
complexity: 5, // Medium complexity
participants: collaborationRequest.targetAgents,
coordinator: 'system',
phases: [],
dependencies: [],
deadline: originalRequest.deadline || new Date(),
};
return await this.executeCollaborativeTask(task);
}
private synthesizeCollaborativeResponse(
originalResponse: AgentResponse,
collaborativeResponse: CollaborativeResponse
): AgentResponse {
// Combine individual and collaborative responses
return {
...originalResponse,
content: collaborativeResponse.finalRecommendation,
confidence: Math.max(
originalResponse.confidence,
collaborativeResponse.synthesis.confidenceScore
),
reasoning: `${originalResponse.reasoning}\n\nCollaborative Analysis: ${collaborativeResponse.synthesis.finalOutput}`,
};
}
private getAgentDistribution(): Record<string, number> {
const distribution: Record<string, number> = {};
for (const agent of this.agents.values()) {
const role = agent.role.type;
distribution[role] = (distribution[role] || 0) + 1;
}
return distribution;
}
private calculateAverageWorkload(): number {
const agents = Array.from(this.agents.values());
if (agents.length === 0) return 0;
const totalWorkload = agents.reduce((sum, agent) => sum + agent.status.workload, 0);
return totalWorkload / agents.length;
}
}
// Base Agent Implementation
abstract class BaseAgent implements Agent {
id: string;
name: string;
role: AgentRole;
personality: AgentPersonality;
capabilities: AgentCapability[];
expertise: ExpertiseDomain[];
status: AgentStatus;
configuration: AgentConfiguration;
protected logger: Logger;
protected ragSystem: VectorRAGSystem;
protected toolOrchestrator: AdvancedToolOrchestrator;
protected modelRouter: IntelligentModelRouter;
constructor(
id: string,
name: string,
role: AgentRole,
personality: AgentPersonality,
ragSystem: VectorRAGSystem,
toolOrchestrator: AdvancedToolOrchestrator,
modelRouter: IntelligentModelRouter
) {
this.id = id;
this.name = name;
this.role = role;
this.personality = personality;
this.ragSystem = ragSystem;
this.toolOrchestrator = toolOrchestrator;
this.modelRouter = modelRouter;
this.logger = new Logger({ level: 'info' });
// Initialize default status
this.status = {
state: 'idle',
workload: 0,
availability: true,
lastActivity: new Date(),
health: {
performance: 100,
errorRate: 0,
responseTime: 0,
memoryUsage: 0,
issueCount: 0,
lastHealthCheck: new Date(),
},
};
// Initialize default configuration
this.configuration = this.getDefaultConfiguration();
this.capabilities = this.getDefaultCapabilities();
this.expertise = this.getDefaultExpertise();
}
async initialize(): Promise<void> {
this.logger.info(`Initializing agent: ${this.name}`);
await this.customInitialization();
this.status.state = 'idle';
}
abstract process(request: AgentRequest): Promise<AgentResponse>;
async collaborate(agents: Agent[], task: CollaborativeTask): Promise<CollaborativeResponse> {
try {
// Default collaboration implementation using round-robin approach
const responses: AgentResponse[] = [];
const participatingAgents = agents.filter(agent => agent !== this);
this.logger.info(
`Starting collaboration with ${participatingAgents.length} agents for task: ${task.type}`
);
const startTime = Date.now();
// Execute task with each participating agent
for (const agent of participatingAgents) {
try {
const response = await (agent as any).process({
prompt: (task as any).prompt || task.description,
context: (task as any).context,
type: task.type,
constraints: (task as any).constraints,
});
responses.push({
id: `resp_${Date.now()}_${agent.id}`,
requestId: (task as any).id || `task_${Date.now()}`,
agentId: agent.id,
content: response.content || response.result?.toString() || '',
confidence: response.confidence || 0.8,
reasoning:
response.reasoning || `Response from ${(agent as any).type || 'unknown'} agent`,
metadata: {
processingTime: Date.now() - startTime,
tokensUsed: 0,
toolsUsed: [],
modelsUsed: [(agent as any).model || 'unknown'],
qualityScore: response.confidence || 0.8,
complexity: 1,
resources: {
cpu: 0.1,
memory: 0.1,
cost: 0.01,
apiCalls: 1,
},
},
});
} catch (error) {
this.logger.warn(`Agent ${agent.id} failed in collaboration:`, error);
responses.push({
id: `resp_${Date.now()}_${agent.id}`,
requestId: (task as any).id || `task_${Date.now()}`,
agentId: agent.id,
content: `Error: ${error instanceof Error ? error.message : String(error)}`,
confidence: 0,
reasoning: 'Agent execution failed',
metadata: {
processingTime: Date.now() - startTime,
tokensUsed: 0,
toolsUsed: [],
modelsUsed: [],
qualityScore: 0,
complexity: 1,
resources: {
cpu: 0.1,
memory: 0.1,
cost: 0.01,
apiCalls: 1,
},
},
});
}
}
// Synthesize collaborative response
const synthesizedContent = this.synthesizeResponses(
responses,
(task as any).synthesis || 'consensus'
);
const averageConfidence =
responses.reduce((sum, r) => sum + r.confidence, 0) / responses.length;
return {
taskId: (task as any).id || `task_${Date.now()}`,
phases: responses.map(response => ({
phaseId: `phase_${response.agentId}`,
agentId: response.agentId,
result: response,
quality: response.confidence,
confidence: response.confidence,
issues: response.confidence < 0.5 ? ['Low confidence response'] : [],
})),
synthesis: {
approach: 'consensus' as const,
weights: responses.reduce((acc, r) => ({ ...acc, [r.agentId]: r.confidence }), {}),
conflicts: [],
finalOutput: synthesizedContent,
confidenceScore: averageConfidence,
},
consensus: {
agreement: averageConfidence,
conflicts: responses.filter(r => r.confidence < 0.5).length,
convergence: averageConfidence,
stability: averageConfidence,
},
finalRecommendation: synthesizedContent,
metadata: {
totalTime: responses.reduce((sum, r) => sum + (r.metadata?.processingTime || 0), 0),
participationLevel: responses.reduce(
(acc, r) => ({ ...acc, [r.agentId]: r.confidence }),
{}
),
communicationRounds: 1,
decisionsReached: 1,
escalationsRequired: 0,
},
};
} catch (error) {
throw new Error(
`Collaboration failed: ${error instanceof Error ? error.message : String(error)}`
);
}
}
private synthesizeResponses(
responses: AgentResponse[],
method: 'consensus' | 'best' | 'merge'
): string {
if (responses.length === 0) {
return 'No responses available for synthesis';
}
switch (method) {
case 'best': {
// Return the response with highest confidence
const bestResponse = responses.reduce((best, current) =>
current.confidence > best.confidence ? current : best
);
return bestResponse.content;
}
case 'merge':
// Merge all responses with separators
return responses.map(r => `**${r.agentId}**: ${r.content}`).join('\n\n---\n\n');
case 'consensus':
default: {
// Simple consensus: use majority approach or highest confidence
if (responses.length === 1) {
return responses[0]?.content || '';
}
// For multiple responses, combine them intelligently
const highConfidenceResponses = responses.filter(r => r.confidence > 0.7);
if (highConfidenceResponses.length > 0) {
return highConfidenceResponses.map(r => r.content).join('\n\n');
}
// Fallback to best response
return responses.reduce((best, current) =>
current.confidence > best.confidence ? current : best
).content;
}
}
}
async learn(feedback: AgentFeedback): Promise<void> {
// Basic learning implementation
this.logger.debug(`Received feedback for request ${feedback.requestId}: ${feedback.rating}/5`);
// Update expertise based on feedback
this.updateExpertiseFromFeedback(feedback);
}
async shutdown(): Promise<void> {
this.logger.info(`Shutting down agent: ${this.name}`);
this.status.state = 'offline';
await this.customShutdown();
}
protected abstract customInitialization(): Promise<void>;
protected abstract customShutdown(): Promise<void>;
protected abstract getDefaultCapabilities(): AgentCapability[];
protected abstract getDefaultExpertise(): ExpertiseDomain[];
protected getDefaultConfiguration(): AgentConfiguration {
return {
modelPreferences: [
{
providerId: 'ollama',
modelId: 'codellama:34b',
priority: 1,
useCase: ['analysis', 'reasoning'],
configuration: {},
},
],
behaviorSettings: {
verbosity: 'normal',
responseStyle: 'explanatory',
errorHandling: 'adaptive',
optimizationLevel: 'balanced',
},
collaborationSettings: {
preferredTeamSize: 3,
leadershipStyle: 'situational',
communicationFrequency: 'regular',
conflictResolution: 'consensus',
},
learningSettings: {
adaptationRate: 0.1,
feedbackSensitivity: 0.8,
explorationRate: 0.2,
memoryRetention: 30,
learningMethods: ['feedback', 'observation', 'experimentation'],
},
resourceLimits: {
maxMemoryUsage: 512,
maxProcessingTime: 300,
maxConcurrentTasks: 3,
maxToolsPerTask: 10,
costBudget: 1.0,
},
};
}
protected updateExpertiseFromFeedback(feedback: AgentFeedback): void {
// Simple expertise update based on feedback
// In production, this would be more sophisticated
for (const domain of this.expertise) {
if (feedback.rating >= 4) {
domain.level = Math.min(100, domain.level + 1);
} else if (feedback.rating <= 2) {
domain.level = Math.max(0, domain.level - 1);
}
}
}
protected async generateResponse(
request: AgentRequest,
analysis: string,
actions?: AgentAction[]
): Promise<AgentResponse> {
const response: AgentResponse = {
id: `response_${Date.now()}`,
requestId: request.id,
agentId: this.id,
content: analysis,
confidence: 0.8, // Default confidence
reasoning: `Processed as ${this.role.type} with ${this.personality.approach} approach`,
metadata: {
processingTime: 0,
tokensUsed: 0,
toolsUsed: [],
modelsUsed: [],
qualityScore: 0.8,
complexity: this.assessComplexity(request),
resources: {
cpu: 0,
memory: 0,
cost: 0,
apiCalls: 0,
},
},
actions: actions || [],
};
return response;
}
protected assessComplexity(request: AgentRequest): number {
// Simple complexity assessment
let complexity = 0.5;
if (request.content.length > 1000) complexity += 0.2;
if (request.context?.codebase?.complexity) {
complexity += request.context.codebase.complexity * 0.3;
}
if (request.priority === 'critical') complexity += 0.1;
return Math.min(1.0, complexity);
}
}
// Specialized Agent Implementations
class ExplorerAgent extends BaseAgent {
constructor(
id: string,
ragSystem: VectorRAGSystem,
toolOrchestrator: AdvancedToolOrchestrator,
modelRouter: IntelligentModelRouter
) {
super(
id,
'Code Explorer',
{
type: 'explorer',
description: 'Discovers and maps code structures, dependencies, and patterns',
responsibilities: [
'file discovery',
'dependency analysis',
'pattern recognition',
'code mapping',
],
authority: 'advisory',
scope: 'project',
},
{
approach: 'methodical',
communication: 'detailed',
riskTolerance: 'low',
decisionStyle: 'deliberate',
learningStyle: 'observational',
},
ragSystem,
toolOrchestrator,
modelRouter
);
}
async process(request: AgentRequest): Promise<AgentResponse> {
this.status.state = 'busy';
try {
// Explorer-specific processing logic
const analysis = await this.exploreCodebase(request);
const actions = await this.generateExplorationActions(request);
return await this.generateResponse(request, analysis, actions);
} finally {
this.status.state = 'idle';
}
}
protected async customInitialization(): Promise<void> {
// Explorer-specific initialization
}
protected async customShutdown(): Promise<void> {
// Explorer-specific cleanup
}
protected getDefaultCapabilities(): AgentCapability[] {
return [
{
name: 'file_discovery',
level: 'expert',
description: 'Discover and catalog files in a codebase',
tools: ['file_scanner', 'dependency_analyzer'],
learnable: true,
},
{
name: 'pattern_recognition',
level: 'expert',
description: 'Identify architectural and code patterns',
tools: ['ast_analyzer', 'pattern_matcher'],
learnable: true,
},
];
}
protected getDefaultExpertise(): ExpertiseDomain[] {
return [
{
area: 'code_exploration',
level: 90,
technologies: ['git', 'ast', 'static_analysis'],
frameworks: ['typescript', 'javascript', 'python'],
patterns: ['mvc', 'repository', 'factory'],
experience: [],
},
];
}
private async exploreCodebase(request: AgentRequest): Promise<string> {
// Implementation would perform actual codebase exploration
return `Explored codebase structure for: ${request.content}`;
}
// eslint-disable-next-line @typescript-eslint/no-unused-vars
private async generateExplorationActions(_request: AgentRequest): Promise<AgentAction[]> {
return [
{
type: 'analysis_run',
target: 'codebase',
parameters: { type: 'structure_analysis' },
reversible: true,
},
];
}
}
class AnalyzerAgent extends BaseAgent {
constructor(
id: string,
ragSystem: VectorRAGSystem,
toolOrchestrator: AdvancedToolOrchestrator,
modelRouter: IntelligentModelRouter
) {
super(
id,
'Code Analyzer',
{
type: 'analyzer',
description: 'Performs deep analysis of code quality, complexity, and issues',
responsibilities: [
'quality analysis',
'complexity assessment',
'issue detection',
'metrics calculation',
],
authority: 'advisory',
scope: 'project',
},
{
approach: 'methodical',
communication: 'analytical',
riskTolerance: 'medium',
decisionStyle: 'deliberate',
learningStyle: 'theoretical',
},
ragSystem,
toolOrchestrator,
modelRouter
);
}
async process(request: AgentRequest): Promise<AgentResponse> {
this.status.state = 'busy';
try {
const analysis = await this.analyzeCode(request);
const actions = await this.generateAnalysisActions(request);
return await this.generateResponse(request, analysis, actions);
} finally {
this.status.state = 'idle';
}
}
protected async customInitialization(): Promise<void> {
// Analyzer-specific initialization
}
protected async customShutdown(): Promise<void> {
// Analyzer-specific cleanup
}
protected getDefaultCapabilities(): AgentCapability[] {
return [
{
name: 'quality_analysis',
level: 'expert',
description: 'Analyze code quality and identify issues',
tools: ['linter', 'complexity_analyzer', 'security_scanner'],
learnable: true,
},
{
name: 'performance_analysis',
level: 'expert',
description: 'Identify performance bottlenecks and optimization opportunities',
tools: ['profiler', 'benchmarker', 'memory_analyzer'],
learnable: true,
},
];
}
protected getDefaultExpertise(): ExpertiseDomain[] {
return [
{
area: 'code_analysis',
level: 95,
technologies: ['static_analysis', 'dynamic_analysis', 'profiling'],
frameworks: ['eslint', 'sonarqube', 'codecov'],
patterns: ['solid', 'clean_code', 'design_patterns'],
experience: [],
},
];
}
private async analyzeCode(request: AgentRequest): Promise<string> {
// Implementation would perform actual code analysis
return `Analyzed code for: ${request.content}`;
}
// eslint-disable-next-line @typescript-eslint/no-unused-vars
private async generateAnalysisActions(_request: AgentRequest): Promise<AgentAction[]> {
return [
{
type: 'analysis_run',
target: 'code',
parameters: { type: 'quality_analysis' },
reversible: true,
},
];
}
}
// Additional specialized agents would be implemented similarly...
class ImplementorAgent extends BaseAgent {
constructor(
id: string,
ragSystem: VectorRAGSystem,
toolOrchestrator: AdvancedToolOrchestrator,
modelRouter: IntelligentModelRouter
) {
super(
id,
'Code Implementor',
{
type: 'implementor',
description: 'Generates and implements code solutions',
responsibilities: ['code generation', 'feature implementation', 'bug fixes', 'prototyping'],
authority: 'implementation',
scope: 'local',
},
{
approach: 'pragmatic',
communication: 'concise',
riskTolerance: 'medium',
decisionStyle: 'quick',
learningStyle: 'experiential',
},
ragSystem,
toolOrchestrator,
modelRouter
);
}
async process(request: AgentRequest): Promise<AgentResponse> {
this.status.state = 'busy';
try {
const implementation = await this.generateImplementation(request);
const actions = await this.generateImplementationActions(request);
return await this.generateResponse(request, implementation, actions);
} finally {
this.status.state = 'idle';
}
}
protected async customInitialization(): Promise<void> {}
protected async customShutdown(): Promise<void> {}
protected getDefaultCapabilities(): AgentCapability[] {
return [
{
name: 'code_generation',
level: 'expert',
description: 'Generate high-quality code solutions',
tools: ['code_generator', 'template_engine', 'scaffolder'],
learnable: true,
},
];
}
protected getDefaultExpertise(): ExpertiseDomain[] {
return [
{
area: 'software_implementation',
level: 88,
technologies: ['typescript', 'javascript', 'python', 'go'],
frameworks: ['react', 'node', 'express', 'fastapi'],
patterns: ['mvc', 'repository', 'factory', 'observer'],
experience: [],
},
];
}
private async generateImplementation(request: AgentRequest): Promise<string> {
return `Generated implementation for: ${request.content}`;
}
// eslint-disable-next-line @typescript-eslint/no-unused-vars
private async generateImplementationActions(_request: AgentRequest): Promise<AgentAction[]> {
return [
{
type: 'file_create',
target: 'implementation.ts',
parameters: { content: 'generated code' },
reversible: true,
},
];
}
}
class MaintainerAgent extends BaseAgent {
constructor(
id: string,
ragSystem: VectorRAGSystem,
toolOrchestrator: AdvancedToolOrchestrator,
modelRouter: IntelligentModelRouter
) {
super(
id,
'Code Maintainer',
{
type: 'maintainer',
description: 'Maintains and refactors existing code',
responsibilities: ['refactoring', 'documentation', 'dependency updates', 'code cleanup'],
authority: 'implementation',
scope: 'project',
},
{
approach: 'conservative',
communication: 'detailed',
riskTolerance: 'low',
decisionStyle: 'deliberate',
learningStyle: 'observational',
},
ragSystem,
toolOrchestrator,
modelRouter
);
}
async process(request: AgentRequest): Promise<AgentResponse> {
this.status.state = 'busy';
try {
const maintenance = await this.performMaintenance(request);
const actions = await this.generateMaintenanceActions(request);
return await this.generateResponse(request, maintenance, actions);
} finally {
this.status.state = 'idle';
}
}
protected async customInitialization(): Promise<void> {}
protected async customShutdown(): Promise<void> {}
protected getDefaultCapabilities(): AgentCapability[] {
return [
{
name: 'refactoring',
level: 'expert',
description: 'Refactor code while preserving functionality',
tools: ['refactoring_engine', 'test_runner', 'dependency_updater'],
learnable: true,
},
];
}
protected getDefaultExpertise(): ExpertiseDomain[] {
return [
{
area: 'code_maintenance',
level: 85,
technologies: ['refactoring', 'legacy_systems', 'migration'],
frameworks: ['jest', 'mocha', 'pytest'],
patterns: ['refactoring_patterns', 'legacy_patterns'],
experience: [],
},
];
}
private async performMaintenance(request: AgentRequest): Promise<string> {
return `Performed maintenance for: ${request.content}`;
}
// eslint-disable-next-line @typescript-eslint/no-unused-vars
private async generateMaintenanceActions(_request: AgentRequest): Promise<AgentAction[]> {
return [
{
type: 'file_modify',
target: 'legacy_file.ts',
parameters: { refactor: true },
reversible: true,
},
];
}
}
class SecurityAgent extends BaseAgent {
constructor(
id: string,
ragSystem: VectorRAGSystem,
toolOrchestrator: AdvancedToolOrchestrator,
modelRouter: IntelligentModelRouter
) {
super(
id,
'Security Specialist',
{
type: 'security',
description: 'Analyzes and improves security aspects of code',
responsibilities: [
'vulnerability scanning',
'security hardening',
'compliance checking',
'threat modeling',
],
authority: 'advisory',
scope: 'system',
},
{
approach: 'perfectionist',
communication: 'technical',
riskTolerance: 'low',
decisionStyle: 'deliberate',
learningStyle: 'theoretical',
},
ragSystem,
toolOrchestrator,
modelRouter
);
}
async process(request: AgentRequest): Promise<AgentResponse> {
this.status.state = 'busy';
try {
const securityAnalysis = await this.analyzeSecurity(request);
const actions = await this.generateSecurityActions(request);
return await this.generateResponse(request, securityAnalysis, actions);
} finally {
this.status.state = 'idle';
}
}
protected async customInitialization(): Promise<void> {}
protected async customShutdown(): Promise<void> {}
protected getDefaultCapabilities(): AgentCapability[] {
return [
{
name: 'vulnerability_detection',
level: 'expert',
description: 'Detect security vulnerabilities in code',
tools: ['security_scanner', 'sast_tools', 'dependency_checker'],
learnable: true,
},
];
}
protected getDefaultExpertise(): ExpertiseDomain[] {
return [
{
area: 'cybersecurity',
level: 92,
technologies: ['owasp', 'sast', 'dast', 'penetration_testing'],
frameworks: ['snyk', 'sonarqube', 'checkmarx'],
patterns: ['secure_coding', 'authentication', 'authorization'],
experience: [],
},
];
}
private async analyzeSecurity(request: AgentRequest): Promise<string> {
return `Performed security analysis for: ${request.content}`;
}
// eslint-disable-next-line @typescript-eslint/no-unused-vars
private async generateSecurityActions(_request: AgentRequest): Promise<AgentAction[]> {
return [
{
type: 'analysis_run',
target: 'security_scan',
parameters: { type: 'vulnerability_scan' },
reversible: true,
},
];
}
}
class OptimizerAgent extends BaseAgent {
constructor(
id: string,
ragSystem: VectorRAGSystem,
toolOrchestrator: AdvancedToolOrchestrator,
modelRouter: IntelligentModelRouter
) {
super(
id,
'Performance Optimizer',
{
type: 'optimizer',
description: 'Optimizes code and system performance',
responsibilities: [
'performance tuning',
'resource optimization',
'bottleneck identification',
'scaling recommendations',
],
authority: 'implementation',
scope: 'system',
},
{
approach: 'innovative',
communication: 'technical',
riskTolerance: 'medium',
decisionStyle: 'quick',
learningStyle: 'experiential',
},
ragSystem,
toolOrchestrator,
modelRouter
);
}
async process(request: AgentRequest): Promise<AgentResponse> {
this.status.state = 'busy';
try {
const optimization = await this.optimizePerformance(request);
const actions = await this.generateOptimizationActions(request);
return await this.generateResponse(request, optimization, actions);
} finally {
this.status.state = 'idle';
}
}
protected async customInitialization(): Promise<void> {}
protected async customShutdown(): Promise<void> {}
protected getDefaultCapabilities(): AgentCapability[] {
return [
{
name: 'performance_optimization',
level: 'expert',
description: 'Optimize system and code performance',
tools: ['profiler', 'benchmarker', 'optimizer'],
learnable: true,
},
{
name: 'memory_management',
level: 'expert',
description: 'Detect and prevent memory leaks',
tools: ['memory_profiler', 'gc_analyzer', 'leak_detector'],
learnable: true,
},
{
name: 'algorithm_optimization',
level: 'expert',
description: 'Optimize algorithms and data structures',
tools: ['complexity_analyzer', 'benchmark_suite', 'profiler'],
learnable: true,
},
{
name: 'async_optimization',
level: 'expert',
description: 'Optimize asynchronous operations',
tools: ['concurrency_analyzer', 'event_loop_monitor', 'promise_tracker'],
learnable: true,
},
];
}
protected getDefaultExpertise(): ExpertiseDomain[] {
return [
{
area: 'performance_engineering',
level: 87,
technologies: ['profiling', 'benchmarking', 'caching', 'optimization'],
frameworks: ['performance_monitoring', 'apm_tools'],
patterns: ['caching_patterns', 'optimization_patterns'],
experience: [],
},
];
}
private async optimizePerformance(request: AgentRequest): Promise<string> {
try {
// Analyze the request content for performance optimization opportunities
const performanceAnalysis = await this.analyzePerformance(request.content);
// Generate optimization recommendations
const optimizations = [];
// Check for common performance issues
if (performanceAnalysis.hasMemoryLeaks) {
optimizations.push('Memory leak detection and prevention');
}
if (performanceAnalysis.hasInefficientLoops) {
optimizations.push('Loop optimization and algorithmic improvements');
}
if (performanceAnalysis.hasBlockingOperations) {
optimizations.push('Async/await optimization for non-blocking operations');
}
if (performanceAnalysis.hasCachingOpportunities) {
optimizations.push('Caching strategy implementation');
}
if (performanceAnalysis.hasLargePayloads) {
optimizations.push('Data compression and payload optimization');
}
return `Performance optimization analysis complete:\n${optimizations.map(opt => `• ${opt}`).join('\n')}`;
} catch (error) {
return `Performance optimization failed: ${error instanceof Error ? error.message : 'Unknown error'}`;
}
}
private async analyzePerformance(content: string): Promise<any> {
const analysis = {
hasMemoryLeaks: false,
hasInefficientLoops: false,
hasBlockingOperations: false,
hasCachingOpportunities: false,
hasLargePayloads: false,
};
// Check for memory leak patterns
if (
/new\s+\w+|setInterval|addEventListener/gi.test(content) &&
!/cleanup|dispose|removeEventListener|clearInterval/gi.test(content)
) {
analysis.hasMemoryLeaks = true;
}
// Check for inefficient loops
if (/for\s*\([^)]*\.[^)]*length[^)]*\)|while\s*\([^)]*\.[^)]*length[^)]*\)/gi.test(content)) {
analysis.hasInefficientLoops = true;
}
// Check for blocking operations
if (/\.readFileSync|sleep\(|setTimeout\s*\([^,]*,\s*[5-9]\d{3,}/gi.test(content)) {
analysis.hasBlockingOperations = true;
}
// Check for caching opportunities
if (
/fetch\(|axios\.|http\.|database\.|query\(/gi.test(content) &&
!/cache|memoize|store/gi.test(content)
) {
analysis.hasCachingOpportunities = true;
}
// Check for large payloads
if (/JSON\.stringify|response\.data|largeObject/gi.test(content)) {
analysis.hasLargePayloads = true;
}
return analysis;
}
private async generateOptimizationActions(request: AgentRequest): Promise<AgentAction[]> {
const actions: AgentAction[] = [];
try {
const performanceAnalysis = await this.analyzePerformance(request.content);
// Generate specific optimization actions based on analysis
if (performanceAnalysis.hasMemoryLeaks) {
actions.push({
type: 'file_modify',
target: 'memory-optimization.ts',
parameters: {
optimization: 'memory_leak_prevention',
techniques: ['weak_references', 'disposal_patterns', 'gc_optimization'],
},
reversible: true,
});
}
if (performanceAnalysis.hasInefficientLoops) {
actions.push({
type: