codebridge-ai
Version:
Complete fullstack AI coding platform with AST-based code integration and local LLM support. Now with comprehensive web technology support (HTML/CSS/JS) plus JavaScript, Python, Rust, and C++.
22 lines • 1.91 kB
JSON
{
"timestamp": "2025-08-02T16:15:38.704Z",
"model": "deepseek-coder:6.7b",
"language": "python",
"scenario": "data-processing",
"task": "Add error handling, CSV library usage, and type hints",
"originalCode": "def process_csv(filename):\n data = []\n with open(filename, 'r') as f:\n for line in f:\n data.append(line.strip().split(','))\n return data",
"rawResponse": "Here is your updated python code:\n\n```python\nimport csv\nfrom typing import List, TextIO\n\ndef process_csv(filename: str) -> List[List[str]]:\n try:\n with open(filename, 'r') as f: # type: TextIO\n data = list(csv.reader(f))\n return data\n except FileNotFoundError:\n print(\"File not found\")\n return []\n except csv.Error as e:\n print(f\"Couldn't parse CSV file due to {e}\")\n return []\n```\nThis function opens the specified filename and reads its content line by line, splitting each line into a list of strings using Python's built-in `csv` module. It also includes error handling for cases where the file does not exist or there is an issue with parsing the CSV data. Type hints are used to specify expected types at runtime.\n",
"improvedCode": "import csv\nfrom typing import List, TextIO\n\ndef process_csv(filename: str) -> List[List[str]]:\n try:\n with open(filename, 'r') as f: # type: TextIO\n data = list(csv.reader(f))\n return data\n except FileNotFoundError:\n print(\"File not found\")\n return []\n except csv.Error as e:\n print(f\"Couldn't parse CSV file due to {e}\")\n return []",
"duration": 4822,
"success": true,
"qualityMetrics": {
"hasCode": true,
"hasTypeHints": true,
"hasErrorHandling": true,
"taskCompleted": true,
"score": 0.8333333333333334,
"rawScore": 1,
"maxScore": 1.2
},
"error": null
}