UNPKG

cntx-ui

Version:

File context management tool with web UI and MCP server for AI development workflows - bundle project files for LLM consumption

48 lines (39 loc) 2.06 kB
# Performance Hierarchy - Universal Tool Usage Priority ## Core Principle Always use the fastest, most efficient tool available for each task. Optimize for both response time and token efficiency. ## Priority Order ### 1. Vector Database (PRIMARY - if available) - **Response time**: ~20ms - **Token efficiency**: 90% savings vs traditional search - **Best for**: Semantic discovery, pattern matching, "find functions that..." - **Query format**: Semantic descriptions (3-5 descriptive words) - **Example**: "React component state management" ### 2. Structured APIs (SECONDARY - if available) - **Response time**: ~50ms - **Token efficiency**: High (pre-processed data) - **Best for**: Project structure, metadata, organized information - **Examples**: Bundle systems, AST parsing, configuration APIs ### 3. Traditional Search (FALLBACK ONLY) - **Response time**: 100ms+ - **Token efficiency**: Low (raw file content) - **Best for**: Exact string matching, specific error messages - **Use only when**: Vector search fails or exact keywords needed ## Decision Matrix | Task Type | Primary Tool | Secondary | Fallback | |-----------|-------------|-----------|----------| | Code discovery | Vector search | Bundle API | grep/rg | | Pattern matching | Vector search | AST parsing | file scanning | | Architecture overview | Bundle API | Vector search | directory listing | | Exact string search | grep/rg | Vector search | manual search | | Error investigation | Vector search | log parsing | file reading | ## Performance Metrics - **Vector search**: ~5k tokens per query - **Structured APIs**: ~2k tokens per query - **File reading**: ~50k+ tokens per file - **Directory scanning**: ~20k tokens per scan ## Universal Guidelines 1. **Always try semantic search first** for discovery tasks 2. **Use structured data when available** for metadata 3. **Reserve traditional search** for exact matches only 4. **Combine methods intelligently** (vector discovery → precise lookup) 5. **Fail gracefully** with clear explanations when tools are unavailable