cmpstr
Version:
CmpStr is a lightweight, fast and well performing package for calculating string similarity
94 lines (91 loc) • 3.59 kB
JavaScript
// CmpStr v3.0.1 dev-052fa0c-250614 by Paul Köhler @komed3 / MIT License
import { MetricRegistry, Metric } from './Metric.js';
import { Pool } from '../utils/Pool.js';
/**
* Needleman-Wunsch Algorithm
* src/metric/NeedlemanWunsch.ts
*
* @see https://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch_algorithm
*
* The Needleman-Wunsch algorithm performs global alignment, aligning two strings
* entirely, including gaps. It is commonly used in bioinformatics for sequence
* alignment.
*
* @module Metric/NeedlemanWunsch
* @author Paul Köhler (komed3)
* @license MIT
*/
/**
* NeedlemanWunschDistance class extends the Metric class to implement the Needleman-Wunsch algorithm.
*/
class NeedlemanWunschDistance extends Metric {
/**
* Constructor for the NeedlemanWunsch class.
*
* Initializes the Needleman-Wunsch metric with two input strings or
* arrays of strings and optional options.
*
* @param {MetricInput} a - First input string or array of strings
* @param {MetricInput} b - Second input string or array of strings
* @param {MetricOptions} [opt] - Options for the metric computation
*/
constructor(a, b, opt = {}) {
// Call the parent Metric constructor with the metric name and inputs
// Metric is symmetrical
super('needlemanWunsch', a, b, opt, true);
}
/**
* Calculates the Needleman-Wunsch global alignment score between two strings.
*
* @param {string} a - First string
* @param {string} b - Second string
* @param {number} m - Length of the first string
* @param {number} n - Length of the second string
* @param {number} maxLen - Maximum length of the strings
* @return {MetricCompute<NeedlemanRaw>} - Object containing the similarity result and raw score
*/
compute(a, b, m, n, maxLen) {
// Scoring parameters (can be customized via options if needed)
const { match = 1, mismatch = -1, gap = -1 } = this.options;
// Get two reusable arrays from the Pool for the DP rows
const len = m + 1;
const [prev, curr] = Pool.acquireMany('uint16', [len, len]);
// Initialize the first row (gap penalties)
prev[0] = 0;
for (let i = 1; i <= m; i++) prev[i] = prev[i - 1] + gap;
// Fill the DP matrix row by row (over the longer string)
for (let j = 1; j <= n; j++) {
curr[0] = prev[0] + gap;
// Get the character code of the current character in b
const cb = b.charCodeAt(j - 1);
for (let i = 1; i <= m; i++) {
// Score for match / mismatch
const score = a.charCodeAt(i - 1) === cb ? match : mismatch;
// Calculate the maximum score for current cell
curr[i] = Math.max(
prev[i - 1] + score, // Diagonal (match/mismatch)
prev[i] + gap, // Up (gap)
curr[i - 1] + gap // Left (gap)
);
}
// Copy current row to previous for next iteration
prev.set(curr);
}
// The last value in prev is the Needleman-Wunsch score
const score = prev[m];
// Release arrays back to the pool
Pool.release('uint16', prev, len);
Pool.release('uint16', curr, len);
// Use the maximum possible score for the longer string (global alignment)
const denum = maxLen * match;
// Return the result as a MetricCompute object
return {
res: denum === 0 ? 0 : Metric.clamp(score / denum),
raw: { score, denum }
};
}
}
// Register the Needleman-Wunsch algorithm in the metric registry
MetricRegistry.add('needlemanWunsch', NeedlemanWunschDistance);
export { NeedlemanWunschDistance };
//# sourceMappingURL=NeedlemanWunsch.js.map