UNPKG

cmpstr

Version:

CmpStr is a lightweight, fast and well performing package for calculating string similarity

93 lines (90 loc) 3.43 kB
// CmpStr v3.0.1 dev-052fa0c-250614 by Paul Köhler @komed3 / MIT License import { MetricRegistry, Metric } from './Metric.js'; import { Pool } from '../utils/Pool.js'; /** * Levenshtein Distance * src/metric/Levenshtein.ts * * @see https://en.wikipedia.org/wiki/Levenshtein_distance * * The Levenshtein distance is a classic metric for measuring the minimum number * of single-character edits (insertions, deletions, or substitutions) required * to change one string into another. * * It is widely used in approximate string matching, spell checking, and natural * language processing. * * @module Metric/LevenshteinDistance * @author Paul Köhler (komed3) * @license MIT */ /** * LevenshteinDistance class extends the Metric class to implement the Levenshtein distance algorithm. */ class LevenshteinDistance extends Metric { /** * Constructor for the Levenshtein class. * * Initializes the Levenshtein metric with two input strings * or arrays of strings and optional options. * * @param {MetricInput} a - First input string or array of strings * @param {MetricInput} b - Second input string or array of strings * @param {MetricOptions} [opt] - Options for the metric computation */ constructor(a, b, opt = {}) { // Call the parent Metric constructor with the metric name and inputs // Metric is symmetrical super('levenshtein', a, b, opt, true); } /** * Calculates the Levenshtein distance between two strings. * * @param {string} a - First string * @param {string} b - Second string * @param {number} m - Length of the first string * @param {number} n - Length of the second string * @param {number} maxLen - Maximum length of the strings * @return {MetricCompute<LevenshteinRaw>} - Object containing the similarity result and raw distance */ compute(a, b, m, n, maxLen) { // Get two reusable arrays from the Pool for the DP rows const len = m + 1; const [prev, curr] = Pool.acquireMany('uint16', [len, len]); // Initialize the first row (edit distances from empty string to a) for (let i = 0; i <= m; i++) prev[i] = i; // Fill the DP matrix row by row (over the longer string) for (let j = 1; j <= n; j++) { // Cost of transforming empty string to b[0..j] curr[0] = j; // Get the character code of the current character in b const cb = b.charCodeAt(j - 1); for (let i = 1; i <= m; i++) { // Cost is 0 if characters match, 1 otherwise const cost = a.charCodeAt(i - 1) === cb ? 0 : 1; // Calculate the minimum edit distance for current cell curr[i] = Math.min( curr[i - 1] + 1, // Insertion prev[i] + 1, // Deletion prev[i - 1] + cost // Substitution ); } // Copy current row to previous for next iteration prev.set(curr); } // The last value in prev is the Levenshtein distance const dist = prev[m]; // Release arrays back to the pool Pool.release('uint16', prev, len); Pool.release('uint16', curr, len); // Return the result as a MetricCompute object return { res: maxLen === 0 ? 1 : Metric.clamp(1 - dist / maxLen), raw: { dist, maxLen } }; } } // Register the Levenshtein distance in the metric registry MetricRegistry.add('levenshtein', LevenshteinDistance); export { LevenshteinDistance }; //# sourceMappingURL=Levenshtein.js.map