UNPKG

clustering-tfjs

Version:

High-performance TypeScript clustering algorithms (K-Means, Spectral, Agglomerative) with TensorFlow.js acceleration and scikit-learn compatibility

73 lines (72 loc) 3.19 kB
"use strict"; var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) { if (k2 === undefined) k2 = k; var desc = Object.getOwnPropertyDescriptor(m, k); if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) { desc = { enumerable: true, get: function() { return m[k]; } }; } Object.defineProperty(o, k2, desc); }) : (function(o, m, k, k2) { if (k2 === undefined) k2 = k; o[k2] = m[k]; })); var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) { Object.defineProperty(o, "default", { enumerable: true, value: v }); }) : function(o, v) { o["default"] = v; }); var __importStar = (this && this.__importStar) || (function () { var ownKeys = function(o) { ownKeys = Object.getOwnPropertyNames || function (o) { var ar = []; for (var k in o) if (Object.prototype.hasOwnProperty.call(o, k)) ar[ar.length] = k; return ar; }; return ownKeys(o); }; return function (mod) { if (mod && mod.__esModule) return mod; var result = {}; if (mod != null) for (var k = ownKeys(mod), i = 0; i < k.length; i++) if (k[i] !== "default") __createBinding(result, mod, k[i]); __setModuleDefault(result, mod); return result; }; })(); Object.defineProperty(exports, "__esModule", { value: true }); exports.createComponentIndicators = createComponentIndicators; const tf = __importStar(require("../tf-adapter")); /** * Creates component indicator features for disconnected graphs. * * For a graph with k connected components, this creates indicator features * where each feature has a constant value for all nodes in that component. * This mimics the behavior of sklearn's shift-invert eigenvectors. * * @param componentLabels - Array indicating which component each node belongs to * @param numComponents - Total number of components detected * @param maxIndicators - Maximum number of indicator vectors to create (usually nClusters) * @returns Component indicator matrix (n_samples x min(numComponents, maxIndicators)) */ function createComponentIndicators(componentLabels, numComponents, maxIndicators) { return tf.tidy(() => { const n = componentLabels.length; const numIndicators = Math.min(numComponents, maxIndicators); // Count nodes per component for normalization const componentSizes = new Array(numComponents).fill(0); for (let i = 0; i < n; i++) { componentSizes[componentLabels[i]]++; } // Create indicator matrix const indicators = new Float32Array(n * numIndicators); // Fill indicators with normalized values // Using 1/sqrt(component_size) normalization to match eigenvector normalization for (let i = 0; i < n; i++) { const comp = componentLabels[i]; if (comp < numIndicators) { indicators[i * numIndicators + comp] = 1.0 / Math.sqrt(componentSizes[comp]); } } return tf.tensor2d(indicators, [n, numIndicators], 'float32'); }); }