UNPKG

clustering-tfjs

Version:

High-performance TypeScript clustering algorithms (K-Means, Spectral, Agglomerative) with TensorFlow.js acceleration and scikit-learn compatibility

130 lines (129 loc) 4.05 kB
"use strict"; /** * TensorFlow.js backend manager * * Manages a singleton instance of TensorFlow.js with support for * multiple backends and environments. */ var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) { if (k2 === undefined) k2 = k; var desc = Object.getOwnPropertyDescriptor(m, k); if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) { desc = { enumerable: true, get: function() { return m[k]; } }; } Object.defineProperty(o, k2, desc); }) : (function(o, m, k, k2) { if (k2 === undefined) k2 = k; o[k2] = m[k]; })); var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) { Object.defineProperty(o, "default", { enumerable: true, value: v }); }) : function(o, v) { o["default"] = v; }); var __importStar = (this && this.__importStar) || (function () { var ownKeys = function(o) { ownKeys = Object.getOwnPropertyNames || function (o) { var ar = []; for (var k in o) if (Object.prototype.hasOwnProperty.call(o, k)) ar[ar.length] = k; return ar; }; return ownKeys(o); }; return function (mod) { if (mod && mod.__esModule) return mod; var result = {}; if (mod != null) for (var k = ownKeys(mod), i = 0; i < k.length; i++) if (k[i] !== "default") __createBinding(result, mod, k[i]); __setModuleDefault(result, mod); return result; }; })(); Object.defineProperty(exports, "__esModule", { value: true }); exports.initializeBackend = initializeBackend; exports.getTensorFlow = getTensorFlow; exports.isInitialized = isInitialized; exports.resetBackend = resetBackend; // Singleton storage let tfInstance = null; let initializationPromise = null; /** * Initialize the TensorFlow.js backend */ async function initializeBackend(config = {}) { // Return existing instance if already initialized if (tfInstance) { return tfInstance; } // Return existing initialization promise if in progress if (initializationPromise) { return initializationPromise; } // Start initialization initializationPromise = loadBackend(config); try { tfInstance = await initializationPromise; return tfInstance; } catch (error) { // Reset on error to allow retry initializationPromise = null; throw error; } } /** * Get the current TensorFlow instance * @throws Error if not initialized */ function getTensorFlow() { if (!tfInstance) { throw new Error('TensorFlow.js not initialized. Please call Clustering.init() first.'); } return tfInstance; } /** * Check if TensorFlow is initialized */ function isInitialized() { return tfInstance !== null; } /** * Reset the backend (mainly for testing) */ function resetBackend() { tfInstance = null; initializationPromise = null; } /** * Load the appropriate backend based on environment and config */ async function loadBackend(config) { // Detect environment const isNode = typeof window === 'undefined' && typeof process !== 'undefined' && process.versions && process.versions.node; let tf; if (isNode) { // Node.js environment const loader = await Promise.resolve().then(() => __importStar(require('./tf-loader.node'))); tf = await loader.loadTensorFlow(); } else { // Browser environment const loader = await Promise.resolve().then(() => __importStar(require('./tf-loader.browser'))); tf = await loader.loadTensorFlow(); } // Set custom flags if provided if (config.flags) { Object.entries(config.flags).forEach(([flag, value]) => { tf.env().setFlags({ [flag]: value }); }); } // Set specific backend if requested if (config.backend) { await tf.setBackend(config.backend); } // Wait for backend to be ready await tf.ready(); return tf; }