UNPKG

clustering-tfjs

Version:

High-performance TypeScript clustering algorithms (K-Means, Spectral, Agglomerative) with TensorFlow.js acceleration and scikit-learn compatibility

31 lines 1.36 kB
import * as tf from '../tf-adapter'; import type { SpectralClusteringParams } from './types'; /** * Configuration for parameter optimization */ interface OptimizationConfig { gamma: number; metric: 'calinski-harabasz' | 'davies-bouldin' | 'silhouette'; attempts: number; useValidation: boolean; } /** * Result of optimization */ interface OptimizationResult { labels: number[]; config: OptimizationConfig; score?: number; } /** * Performs validation-based optimization for spectral clustering. * Tries multiple k-means initializations and selects the best based on validation score. */ export declare function validationBasedOptimization(embedding: tf.Tensor2D, nClusters: number, metric: 'calinski-harabasz' | 'davies-bouldin' | 'silhouette', attempts: number, randomState?: number): Promise<OptimizationResult>; /** * Performs intensive parameter sweep for difficult clustering problems. * Tests multiple gamma values and validation configurations. */ export declare function intensiveParameterSweep(X: tf.Tensor2D, params: SpectralClusteringParams, computeEmbeddingFromAffinity: (affinityMatrix: tf.Tensor2D) => Promise<tf.Tensor2D>, computeAffinityMatrix: (X: tf.Tensor2D, params: SpectralClusteringParams) => tf.Tensor2D): Promise<OptimizationResult>; export {}; //# sourceMappingURL=spectral_optimization.d.ts.map