UNPKG

clustering-tfjs

Version:

High-performance TypeScript clustering algorithms (K-Means, Spectral, Agglomerative) with TensorFlow.js acceleration and scikit-learn compatibility

118 lines (117 loc) 4.84 kB
"use strict"; /** * Main entry point for the clustering library * * Provides initialization and configuration for multi-platform support. */ var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) { if (k2 === undefined) k2 = k; var desc = Object.getOwnPropertyDescriptor(m, k); if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) { desc = { enumerable: true, get: function() { return m[k]; } }; } Object.defineProperty(o, k2, desc); }) : (function(o, m, k, k2) { if (k2 === undefined) k2 = k; o[k2] = m[k]; })); var __exportStar = (this && this.__exportStar) || function(m, exports) { for (var p in m) if (p !== "default" && !Object.prototype.hasOwnProperty.call(exports, p)) __createBinding(exports, m, p); }; Object.defineProperty(exports, "__esModule", { value: true }); exports.Clustering = exports.findOptimalClusters = exports.pairwiseDistanceMatrix = exports.AgglomerativeClustering = exports.SpectralClustering = exports.KMeans = void 0; const tf_backend_1 = require("./tf-backend"); const kmeans_1 = require("./clustering/kmeans"); const spectral_1 = require("./clustering/spectral"); const agglomerative_1 = require("./clustering/agglomerative"); // Re-export all clustering algorithms and utilities __exportStar(require("./clustering/types"), exports); var kmeans_2 = require("./clustering/kmeans"); Object.defineProperty(exports, "KMeans", { enumerable: true, get: function () { return kmeans_2.KMeans; } }); var spectral_2 = require("./clustering/spectral"); Object.defineProperty(exports, "SpectralClustering", { enumerable: true, get: function () { return spectral_2.SpectralClustering; } }); var agglomerative_2 = require("./clustering/agglomerative"); Object.defineProperty(exports, "AgglomerativeClustering", { enumerable: true, get: function () { return agglomerative_2.AgglomerativeClustering; } }); var pairwise_distance_1 = require("./utils/pairwise_distance"); Object.defineProperty(exports, "pairwiseDistanceMatrix", { enumerable: true, get: function () { return pairwise_distance_1.pairwiseDistanceMatrix; } }); var findOptimalClusters_1 = require("./utils/findOptimalClusters"); Object.defineProperty(exports, "findOptimalClusters", { enumerable: true, get: function () { return findOptimalClusters_1.findOptimalClusters; } }); // Detect platform at runtime const detectPlatform = () => { if (typeof window !== 'undefined' && typeof window.document !== 'undefined') { return 'browser'; } else if (typeof process !== 'undefined' && process.versions && process.versions.node) { return 'node'; } return 'unknown'; }; // Get platform features based on detected platform const getPlatformFeatures = (platform) => { switch (platform) { case 'browser': return { gpuAcceleration: typeof WebGLRenderingContext !== 'undefined', wasmSimd: typeof WebAssembly !== 'undefined' && 'validate' in WebAssembly, nodeBindings: false, webgl: typeof WebGLRenderingContext !== 'undefined', }; case 'node': return { gpuAcceleration: false, // Will be updated after backend init wasmSimd: false, nodeBindings: true, webgl: false, }; default: return { gpuAcceleration: false, wasmSimd: false, nodeBindings: false, webgl: false, }; } }; /** * Main clustering namespace with platform awareness */ exports.Clustering = { /** * Current platform */ platform: detectPlatform(), /** * Platform features */ features: getPlatformFeatures(detectPlatform()), /** * Initialize the clustering library with the specified backend * * @param config - Backend configuration options * @returns Promise that resolves when the backend is ready * * @example * ```typescript * // Auto-detect best backend * await Clustering.init(); * * // Use specific backend * await Clustering.init({ backend: 'webgl' }); * * // With custom flags * await Clustering.init({ * backend: 'wasm', * flags: { 'WASM_HAS_SIMD_SUPPORT': true } * }); * ``` */ async init(config = {}) { await (0, tf_backend_1.initializeBackend)(config); // Features are set at detection time // Could be enhanced later to detect actual backend capabilities }, // Re-export algorithms as properties for convenient access KMeans: kmeans_1.KMeans, SpectralClustering: spectral_1.SpectralClustering, AgglomerativeClustering: agglomerative_1.AgglomerativeClustering, };