cluedin-widget
Version:
1,747 lines (1,442 loc) • 782 kB
JavaScript
(window["webpackJsonp"] = window["webpackJsonp"] || []).push([[36],{
/***/ 1838:
/***/ (function(module, exports, __webpack_require__) {
"use strict";
module.exports = __webpack_require__(1874);
module.exports.easing = __webpack_require__(2005);
module.exports.canvas = __webpack_require__(2006);
module.exports.options = __webpack_require__(2007);
/***/ }),
/***/ 1842:
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var helpers = __webpack_require__(1838);
module.exports = {
/**
* @private
*/
_set: function(scope, values) {
return helpers.merge(this[scope] || (this[scope] = {}), values);
}
};
/***/ }),
/***/ 1849:
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var color = __webpack_require__(1936);
var helpers = __webpack_require__(1838);
function interpolate(start, view, model, ease) {
var keys = Object.keys(model);
var i, ilen, key, actual, origin, target, type, c0, c1;
for (i = 0, ilen = keys.length; i < ilen; ++i) {
key = keys[i];
target = model[key];
// if a value is added to the model after pivot() has been called, the view
// doesn't contain it, so let's initialize the view to the target value.
if (!view.hasOwnProperty(key)) {
view[key] = target;
}
actual = view[key];
if (actual === target || key[0] === '_') {
continue;
}
if (!start.hasOwnProperty(key)) {
start[key] = actual;
}
origin = start[key];
type = typeof target;
if (type === typeof origin) {
if (type === 'string') {
c0 = color(origin);
if (c0.valid) {
c1 = color(target);
if (c1.valid) {
view[key] = c1.mix(c0, ease).rgbString();
continue;
}
}
} else if (type === 'number' && isFinite(origin) && isFinite(target)) {
view[key] = origin + (target - origin) * ease;
continue;
}
}
view[key] = target;
}
}
var Element = function(configuration) {
helpers.extend(this, configuration);
this.initialize.apply(this, arguments);
};
helpers.extend(Element.prototype, {
initialize: function() {
this.hidden = false;
},
pivot: function() {
var me = this;
if (!me._view) {
me._view = helpers.clone(me._model);
}
me._start = {};
return me;
},
transition: function(ease) {
var me = this;
var model = me._model;
var start = me._start;
var view = me._view;
// No animation -> No Transition
if (!model || ease === 1) {
me._view = model;
me._start = null;
return me;
}
if (!view) {
view = me._view = {};
}
if (!start) {
start = me._start = {};
}
interpolate(start, view, model, ease);
return me;
},
tooltipPosition: function() {
return {
x: this._model.x,
y: this._model.y
};
},
hasValue: function() {
return helpers.isNumber(this._model.x) && helpers.isNumber(this._model.y);
}
});
Element.extend = helpers.inherits;
module.exports = Element;
/***/ }),
/***/ 1851:
/***/ (function(module, exports, __webpack_require__) {
"use strict";
var defaults = __webpack_require__(1842);
var helpers = __webpack_require__(1838);
var layouts = __webpack_require__(1861);
module.exports = {
// Scale registration object. Extensions can register new scale types (such as log or DB scales) and then
// use the new chart options to grab the correct scale
constructors: {},
// Use a registration function so that we can move to an ES6 map when we no longer need to support
// old browsers
// Scale config defaults
defaults: {},
registerScaleType: function(type, scaleConstructor, scaleDefaults) {
this.constructors[type] = scaleConstructor;
this.defaults[type] = helpers.clone(scaleDefaults);
},
getScaleConstructor: function(type) {
return this.constructors.hasOwnProperty(type) ? this.constructors[type] : undefined;
},
getScaleDefaults: function(type) {
// Return the scale defaults merged with the global settings so that we always use the latest ones
return this.defaults.hasOwnProperty(type) ? helpers.merge({}, [defaults.scale, this.defaults[type]]) : {};
},
updateScaleDefaults: function(type, additions) {
var me = this;
if (me.defaults.hasOwnProperty(type)) {
me.defaults[type] = helpers.extend(me.defaults[type], additions);
}
},
addScalesToLayout: function(chart) {
// Adds each scale to the chart.boxes array to be sized accordingly
helpers.each(chart.scales, function(scale) {
// Set ILayoutItem parameters for backwards compatibility
scale.fullWidth = scale.options.fullWidth;
scale.position = scale.options.position;
scale.weight = scale.options.weight;
layouts.addBox(chart, scale);
});
}
};
/***/ }),
/***/ 1852:
/***/ (function(module, exports, __webpack_require__) {
"use strict";
module.exports = {};
module.exports.Arc = __webpack_require__(2013);
module.exports.Line = __webpack_require__(2014);
module.exports.Point = __webpack_require__(2015);
module.exports.Rectangle = __webpack_require__(2016);
/***/ }),
/***/ 1856:
/***/ (function(module, __webpack_exports__, __webpack_require__) {
"use strict";
__webpack_require__.r(__webpack_exports__);
// CONCATENATED MODULE: ./node_modules/react-simple-maps/node_modules/d3-geo/src/adder.js
// Adds floating point numbers with twice the normal precision.
// Reference: J. R. Shewchuk, Adaptive Precision Floating-Point Arithmetic and
// Fast Robust Geometric Predicates, Discrete & Computational Geometry 18(3)
// 305–363 (1997).
// Code adapted from GeographicLib by Charles F. F. Karney,
// http://geographiclib.sourceforge.net/
/* harmony default export */ var adder = (function() {
return new Adder;
});
function Adder() {
this.reset();
}
Adder.prototype = {
constructor: Adder,
reset: function() {
this.s = // rounded value
this.t = 0; // exact error
},
add: function(y) {
add(temp, y, this.t);
add(this, temp.s, this.s);
if (this.s) this.t += temp.t;
else this.s = temp.t;
},
valueOf: function() {
return this.s;
}
};
var temp = new Adder;
function add(adder, a, b) {
var x = adder.s = a + b,
bv = x - a,
av = x - bv;
adder.t = (a - av) + (b - bv);
}
// CONCATENATED MODULE: ./node_modules/react-simple-maps/node_modules/d3-geo/src/math.js
var epsilon = 1e-6;
var epsilon2 = 1e-12;
var pi = Math.PI;
var halfPi = pi / 2;
var quarterPi = pi / 4;
var tau = pi * 2;
var degrees = 180 / pi;
var radians = pi / 180;
var abs = Math.abs;
var atan = Math.atan;
var atan2 = Math.atan2;
var cos = Math.cos;
var ceil = Math.ceil;
var exp = Math.exp;
var floor = Math.floor;
var log = Math.log;
var pow = Math.pow;
var sin = Math.sin;
var math_sign = Math.sign || function(x) { return x > 0 ? 1 : x < 0 ? -1 : 0; };
var sqrt = Math.sqrt;
var tan = Math.tan;
function acos(x) {
return x > 1 ? 0 : x < -1 ? pi : Math.acos(x);
}
function asin(x) {
return x > 1 ? halfPi : x < -1 ? -halfPi : Math.asin(x);
}
function haversin(x) {
return (x = sin(x / 2)) * x;
}
// CONCATENATED MODULE: ./node_modules/react-simple-maps/node_modules/d3-geo/src/noop.js
function noop() {}
// CONCATENATED MODULE: ./node_modules/react-simple-maps/node_modules/d3-geo/src/stream.js
function streamGeometry(geometry, stream) {
if (geometry && streamGeometryType.hasOwnProperty(geometry.type)) {
streamGeometryType[geometry.type](geometry, stream);
}
}
var streamObjectType = {
Feature: function(object, stream) {
streamGeometry(object.geometry, stream);
},
FeatureCollection: function(object, stream) {
var features = object.features, i = -1, n = features.length;
while (++i < n) streamGeometry(features[i].geometry, stream);
}
};
var streamGeometryType = {
Sphere: function(object, stream) {
stream.sphere();
},
Point: function(object, stream) {
object = object.coordinates;
stream.point(object[0], object[1], object[2]);
},
MultiPoint: function(object, stream) {
var coordinates = object.coordinates, i = -1, n = coordinates.length;
while (++i < n) object = coordinates[i], stream.point(object[0], object[1], object[2]);
},
LineString: function(object, stream) {
streamLine(object.coordinates, stream, 0);
},
MultiLineString: function(object, stream) {
var coordinates = object.coordinates, i = -1, n = coordinates.length;
while (++i < n) streamLine(coordinates[i], stream, 0);
},
Polygon: function(object, stream) {
streamPolygon(object.coordinates, stream);
},
MultiPolygon: function(object, stream) {
var coordinates = object.coordinates, i = -1, n = coordinates.length;
while (++i < n) streamPolygon(coordinates[i], stream);
},
GeometryCollection: function(object, stream) {
var geometries = object.geometries, i = -1, n = geometries.length;
while (++i < n) streamGeometry(geometries[i], stream);
}
};
function streamLine(coordinates, stream, closed) {
var i = -1, n = coordinates.length - closed, coordinate;
stream.lineStart();
while (++i < n) coordinate = coordinates[i], stream.point(coordinate[0], coordinate[1], coordinate[2]);
stream.lineEnd();
}
function streamPolygon(coordinates, stream) {
var i = -1, n = coordinates.length;
stream.polygonStart();
while (++i < n) streamLine(coordinates[i], stream, 1);
stream.polygonEnd();
}
/* harmony default export */ var src_stream = (function(object, stream) {
if (object && streamObjectType.hasOwnProperty(object.type)) {
streamObjectType[object.type](object, stream);
} else {
streamGeometry(object, stream);
}
});
// CONCATENATED MODULE: ./node_modules/react-simple-maps/node_modules/d3-geo/src/area.js
var areaRingSum = adder();
var areaSum = adder(),
area_lambda00,
phi00,
area_lambda0,
area_cosPhi0,
area_sinPhi0;
var areaStream = {
point: noop,
lineStart: noop,
lineEnd: noop,
polygonStart: function() {
areaRingSum.reset();
areaStream.lineStart = areaRingStart;
areaStream.lineEnd = areaRingEnd;
},
polygonEnd: function() {
var areaRing = +areaRingSum;
areaSum.add(areaRing < 0 ? tau + areaRing : areaRing);
this.lineStart = this.lineEnd = this.point = noop;
},
sphere: function() {
areaSum.add(tau);
}
};
function areaRingStart() {
areaStream.point = areaPointFirst;
}
function areaRingEnd() {
areaPoint(area_lambda00, phi00);
}
function areaPointFirst(lambda, phi) {
areaStream.point = areaPoint;
area_lambda00 = lambda, phi00 = phi;
lambda *= radians, phi *= radians;
area_lambda0 = lambda, area_cosPhi0 = cos(phi = phi / 2 + quarterPi), area_sinPhi0 = sin(phi);
}
function areaPoint(lambda, phi) {
lambda *= radians, phi *= radians;
phi = phi / 2 + quarterPi; // half the angular distance from south pole
// Spherical excess E for a spherical triangle with vertices: south pole,
// previous point, current point. Uses a formula derived from Cagnoli’s
// theorem. See Todhunter, Spherical Trig. (1871), Sec. 103, Eq. (2).
var dLambda = lambda - area_lambda0,
sdLambda = dLambda >= 0 ? 1 : -1,
adLambda = sdLambda * dLambda,
cosPhi = cos(phi),
sinPhi = sin(phi),
k = area_sinPhi0 * sinPhi,
u = area_cosPhi0 * cosPhi + k * cos(adLambda),
v = k * sdLambda * sin(adLambda);
areaRingSum.add(atan2(v, u));
// Advance the previous points.
area_lambda0 = lambda, area_cosPhi0 = cosPhi, area_sinPhi0 = sinPhi;
}
/* harmony default export */ var src_area = (function(object) {
areaSum.reset();
src_stream(object, areaStream);
return areaSum * 2;
});
// CONCATENATED MODULE: ./node_modules/react-simple-maps/node_modules/d3-geo/src/cartesian.js
function cartesian_spherical(cartesian) {
return [atan2(cartesian[1], cartesian[0]), asin(cartesian[2])];
}
function cartesian_cartesian(spherical) {
var lambda = spherical[0], phi = spherical[1], cosPhi = cos(phi);
return [cosPhi * cos(lambda), cosPhi * sin(lambda), sin(phi)];
}
function cartesianDot(a, b) {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
function cartesianCross(a, b) {
return [a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2], a[0] * b[1] - a[1] * b[0]];
}
// TODO return a
function cartesianAddInPlace(a, b) {
a[0] += b[0], a[1] += b[1], a[2] += b[2];
}
function cartesianScale(vector, k) {
return [vector[0] * k, vector[1] * k, vector[2] * k];
}
// TODO return d
function cartesianNormalizeInPlace(d) {
var l = sqrt(d[0] * d[0] + d[1] * d[1] + d[2] * d[2]);
d[0] /= l, d[1] /= l, d[2] /= l;
}
// CONCATENATED MODULE: ./node_modules/react-simple-maps/node_modules/d3-geo/src/bounds.js
var bounds_lambda0, bounds_phi0, bounds_lambda1, bounds_phi1, // bounds
bounds_lambda2, // previous lambda-coordinate
bounds_lambda00, bounds_phi00, // first point
bounds_p0, // previous 3D point
deltaSum = adder(),
ranges,
range;
var boundsStream = {
point: boundsPoint,
lineStart: boundsLineStart,
lineEnd: boundsLineEnd,
polygonStart: function() {
boundsStream.point = boundsRingPoint;
boundsStream.lineStart = boundsRingStart;
boundsStream.lineEnd = boundsRingEnd;
deltaSum.reset();
areaStream.polygonStart();
},
polygonEnd: function() {
areaStream.polygonEnd();
boundsStream.point = boundsPoint;
boundsStream.lineStart = boundsLineStart;
boundsStream.lineEnd = boundsLineEnd;
if (areaRingSum < 0) bounds_lambda0 = -(bounds_lambda1 = 180), bounds_phi0 = -(bounds_phi1 = 90);
else if (deltaSum > epsilon) bounds_phi1 = 90;
else if (deltaSum < -epsilon) bounds_phi0 = -90;
range[0] = bounds_lambda0, range[1] = bounds_lambda1;
}
};
function boundsPoint(lambda, phi) {
ranges.push(range = [bounds_lambda0 = lambda, bounds_lambda1 = lambda]);
if (phi < bounds_phi0) bounds_phi0 = phi;
if (phi > bounds_phi1) bounds_phi1 = phi;
}
function bounds_linePoint(lambda, phi) {
var p = cartesian_cartesian([lambda * radians, phi * radians]);
if (bounds_p0) {
var normal = cartesianCross(bounds_p0, p),
equatorial = [normal[1], -normal[0], 0],
inflection = cartesianCross(equatorial, normal);
cartesianNormalizeInPlace(inflection);
inflection = cartesian_spherical(inflection);
var delta = lambda - bounds_lambda2,
sign = delta > 0 ? 1 : -1,
lambdai = inflection[0] * degrees * sign,
phii,
antimeridian = abs(delta) > 180;
if (antimeridian ^ (sign * bounds_lambda2 < lambdai && lambdai < sign * lambda)) {
phii = inflection[1] * degrees;
if (phii > bounds_phi1) bounds_phi1 = phii;
} else if (lambdai = (lambdai + 360) % 360 - 180, antimeridian ^ (sign * bounds_lambda2 < lambdai && lambdai < sign * lambda)) {
phii = -inflection[1] * degrees;
if (phii < bounds_phi0) bounds_phi0 = phii;
} else {
if (phi < bounds_phi0) bounds_phi0 = phi;
if (phi > bounds_phi1) bounds_phi1 = phi;
}
if (antimeridian) {
if (lambda < bounds_lambda2) {
if (bounds_angle(bounds_lambda0, lambda) > bounds_angle(bounds_lambda0, bounds_lambda1)) bounds_lambda1 = lambda;
} else {
if (bounds_angle(lambda, bounds_lambda1) > bounds_angle(bounds_lambda0, bounds_lambda1)) bounds_lambda0 = lambda;
}
} else {
if (bounds_lambda1 >= bounds_lambda0) {
if (lambda < bounds_lambda0) bounds_lambda0 = lambda;
if (lambda > bounds_lambda1) bounds_lambda1 = lambda;
} else {
if (lambda > bounds_lambda2) {
if (bounds_angle(bounds_lambda0, lambda) > bounds_angle(bounds_lambda0, bounds_lambda1)) bounds_lambda1 = lambda;
} else {
if (bounds_angle(lambda, bounds_lambda1) > bounds_angle(bounds_lambda0, bounds_lambda1)) bounds_lambda0 = lambda;
}
}
}
} else {
ranges.push(range = [bounds_lambda0 = lambda, bounds_lambda1 = lambda]);
}
if (phi < bounds_phi0) bounds_phi0 = phi;
if (phi > bounds_phi1) bounds_phi1 = phi;
bounds_p0 = p, bounds_lambda2 = lambda;
}
function boundsLineStart() {
boundsStream.point = bounds_linePoint;
}
function boundsLineEnd() {
range[0] = bounds_lambda0, range[1] = bounds_lambda1;
boundsStream.point = boundsPoint;
bounds_p0 = null;
}
function boundsRingPoint(lambda, phi) {
if (bounds_p0) {
var delta = lambda - bounds_lambda2;
deltaSum.add(abs(delta) > 180 ? delta + (delta > 0 ? 360 : -360) : delta);
} else {
bounds_lambda00 = lambda, bounds_phi00 = phi;
}
areaStream.point(lambda, phi);
bounds_linePoint(lambda, phi);
}
function boundsRingStart() {
areaStream.lineStart();
}
function boundsRingEnd() {
boundsRingPoint(bounds_lambda00, bounds_phi00);
areaStream.lineEnd();
if (abs(deltaSum) > epsilon) bounds_lambda0 = -(bounds_lambda1 = 180);
range[0] = bounds_lambda0, range[1] = bounds_lambda1;
bounds_p0 = null;
}
// Finds the left-right distance between two longitudes.
// This is almost the same as (lambda1 - lambda0 + 360°) % 360°, except that we want
// the distance between ±180° to be 360°.
function bounds_angle(lambda0, lambda1) {
return (lambda1 -= lambda0) < 0 ? lambda1 + 360 : lambda1;
}
function rangeCompare(a, b) {
return a[0] - b[0];
}
function rangeContains(range, x) {
return range[0] <= range[1] ? range[0] <= x && x <= range[1] : x < range[0] || range[1] < x;
}
/* harmony default export */ var bounds = (function(feature) {
var i, n, a, b, merged, deltaMax, delta;
bounds_phi1 = bounds_lambda1 = -(bounds_lambda0 = bounds_phi0 = Infinity);
ranges = [];
src_stream(feature, boundsStream);
// First, sort ranges by their minimum longitudes.
if (n = ranges.length) {
ranges.sort(rangeCompare);
// Then, merge any ranges that overlap.
for (i = 1, a = ranges[0], merged = [a]; i < n; ++i) {
b = ranges[i];
if (rangeContains(a, b[0]) || rangeContains(a, b[1])) {
if (bounds_angle(a[0], b[1]) > bounds_angle(a[0], a[1])) a[1] = b[1];
if (bounds_angle(b[0], a[1]) > bounds_angle(a[0], a[1])) a[0] = b[0];
} else {
merged.push(a = b);
}
}
// Finally, find the largest gap between the merged ranges.
// The final bounding box will be the inverse of this gap.
for (deltaMax = -Infinity, n = merged.length - 1, i = 0, a = merged[n]; i <= n; a = b, ++i) {
b = merged[i];
if ((delta = bounds_angle(a[1], b[0])) > deltaMax) deltaMax = delta, bounds_lambda0 = b[0], bounds_lambda1 = a[1];
}
}
ranges = range = null;
return bounds_lambda0 === Infinity || bounds_phi0 === Infinity
? [[NaN, NaN], [NaN, NaN]]
: [[bounds_lambda0, bounds_phi0], [bounds_lambda1, bounds_phi1]];
});
// CONCATENATED MODULE: ./node_modules/react-simple-maps/node_modules/d3-geo/src/centroid.js
var W0, W1,
centroid_X0, centroid_Y0, Z0,
centroid_X1, centroid_Y1, Z1,
X2, Y2, Z2,
centroid_lambda00, centroid_phi00, // first point
centroid_x0, centroid_y0, z0; // previous point
var centroidStream = {
sphere: noop,
point: centroidPoint,
lineStart: centroidLineStart,
lineEnd: centroidLineEnd,
polygonStart: function() {
centroidStream.lineStart = centroidRingStart;
centroidStream.lineEnd = centroidRingEnd;
},
polygonEnd: function() {
centroidStream.lineStart = centroidLineStart;
centroidStream.lineEnd = centroidLineEnd;
}
};
// Arithmetic mean of Cartesian vectors.
function centroidPoint(lambda, phi) {
lambda *= radians, phi *= radians;
var cosPhi = cos(phi);
centroidPointCartesian(cosPhi * cos(lambda), cosPhi * sin(lambda), sin(phi));
}
function centroidPointCartesian(x, y, z) {
++W0;
centroid_X0 += (x - centroid_X0) / W0;
centroid_Y0 += (y - centroid_Y0) / W0;
Z0 += (z - Z0) / W0;
}
function centroidLineStart() {
centroidStream.point = centroidLinePointFirst;
}
function centroidLinePointFirst(lambda, phi) {
lambda *= radians, phi *= radians;
var cosPhi = cos(phi);
centroid_x0 = cosPhi * cos(lambda);
centroid_y0 = cosPhi * sin(lambda);
z0 = sin(phi);
centroidStream.point = centroidLinePoint;
centroidPointCartesian(centroid_x0, centroid_y0, z0);
}
function centroidLinePoint(lambda, phi) {
lambda *= radians, phi *= radians;
var cosPhi = cos(phi),
x = cosPhi * cos(lambda),
y = cosPhi * sin(lambda),
z = sin(phi),
w = atan2(sqrt((w = centroid_y0 * z - z0 * y) * w + (w = z0 * x - centroid_x0 * z) * w + (w = centroid_x0 * y - centroid_y0 * x) * w), centroid_x0 * x + centroid_y0 * y + z0 * z);
W1 += w;
centroid_X1 += w * (centroid_x0 + (centroid_x0 = x));
centroid_Y1 += w * (centroid_y0 + (centroid_y0 = y));
Z1 += w * (z0 + (z0 = z));
centroidPointCartesian(centroid_x0, centroid_y0, z0);
}
function centroidLineEnd() {
centroidStream.point = centroidPoint;
}
// See J. E. Brock, The Inertia Tensor for a Spherical Triangle,
// J. Applied Mechanics 42, 239 (1975).
function centroidRingStart() {
centroidStream.point = centroidRingPointFirst;
}
function centroidRingEnd() {
centroidRingPoint(centroid_lambda00, centroid_phi00);
centroidStream.point = centroidPoint;
}
function centroidRingPointFirst(lambda, phi) {
centroid_lambda00 = lambda, centroid_phi00 = phi;
lambda *= radians, phi *= radians;
centroidStream.point = centroidRingPoint;
var cosPhi = cos(phi);
centroid_x0 = cosPhi * cos(lambda);
centroid_y0 = cosPhi * sin(lambda);
z0 = sin(phi);
centroidPointCartesian(centroid_x0, centroid_y0, z0);
}
function centroidRingPoint(lambda, phi) {
lambda *= radians, phi *= radians;
var cosPhi = cos(phi),
x = cosPhi * cos(lambda),
y = cosPhi * sin(lambda),
z = sin(phi),
cx = centroid_y0 * z - z0 * y,
cy = z0 * x - centroid_x0 * z,
cz = centroid_x0 * y - centroid_y0 * x,
m = sqrt(cx * cx + cy * cy + cz * cz),
w = asin(m), // line weight = angle
v = m && -w / m; // area weight multiplier
X2 += v * cx;
Y2 += v * cy;
Z2 += v * cz;
W1 += w;
centroid_X1 += w * (centroid_x0 + (centroid_x0 = x));
centroid_Y1 += w * (centroid_y0 + (centroid_y0 = y));
Z1 += w * (z0 + (z0 = z));
centroidPointCartesian(centroid_x0, centroid_y0, z0);
}
/* harmony default export */ var centroid = (function(object) {
W0 = W1 =
centroid_X0 = centroid_Y0 = Z0 =
centroid_X1 = centroid_Y1 = Z1 =
X2 = Y2 = Z2 = 0;
src_stream(object, centroidStream);
var x = X2,
y = Y2,
z = Z2,
m = x * x + y * y + z * z;
// If the area-weighted ccentroid is undefined, fall back to length-weighted ccentroid.
if (m < epsilon2) {
x = centroid_X1, y = centroid_Y1, z = Z1;
// If the feature has zero length, fall back to arithmetic mean of point vectors.
if (W1 < epsilon) x = centroid_X0, y = centroid_Y0, z = Z0;
m = x * x + y * y + z * z;
// If the feature still has an undefined ccentroid, then return.
if (m < epsilon2) return [NaN, NaN];
}
return [atan2(y, x) * degrees, asin(z / sqrt(m)) * degrees];
});
// CONCATENATED MODULE: ./node_modules/react-simple-maps/node_modules/d3-geo/src/constant.js
/* harmony default export */ var constant = (function(x) {
return function() {
return x;
};
});
// CONCATENATED MODULE: ./node_modules/react-simple-maps/node_modules/d3-geo/src/compose.js
/* harmony default export */ var compose = (function(a, b) {
function compose(x, y) {
return x = a(x, y), b(x[0], x[1]);
}
if (a.invert && b.invert) compose.invert = function(x, y) {
return x = b.invert(x, y), x && a.invert(x[0], x[1]);
};
return compose;
});
// CONCATENATED MODULE: ./node_modules/react-simple-maps/node_modules/d3-geo/src/rotation.js
function rotationIdentity(lambda, phi) {
return [lambda > pi ? lambda - tau : lambda < -pi ? lambda + tau : lambda, phi];
}
rotationIdentity.invert = rotationIdentity;
function rotateRadians(deltaLambda, deltaPhi, deltaGamma) {
return (deltaLambda %= tau) ? (deltaPhi || deltaGamma ? compose(rotationLambda(deltaLambda), rotationPhiGamma(deltaPhi, deltaGamma))
: rotationLambda(deltaLambda))
: (deltaPhi || deltaGamma ? rotationPhiGamma(deltaPhi, deltaGamma)
: rotationIdentity);
}
function forwardRotationLambda(deltaLambda) {
return function(lambda, phi) {
return lambda += deltaLambda, [lambda > pi ? lambda - tau : lambda < -pi ? lambda + tau : lambda, phi];
};
}
function rotationLambda(deltaLambda) {
var rotation = forwardRotationLambda(deltaLambda);
rotation.invert = forwardRotationLambda(-deltaLambda);
return rotation;
}
function rotationPhiGamma(deltaPhi, deltaGamma) {
var cosDeltaPhi = cos(deltaPhi),
sinDeltaPhi = sin(deltaPhi),
cosDeltaGamma = cos(deltaGamma),
sinDeltaGamma = sin(deltaGamma);
function rotation(lambda, phi) {
var cosPhi = cos(phi),
x = cos(lambda) * cosPhi,
y = sin(lambda) * cosPhi,
z = sin(phi),
k = z * cosDeltaPhi + x * sinDeltaPhi;
return [
atan2(y * cosDeltaGamma - k * sinDeltaGamma, x * cosDeltaPhi - z * sinDeltaPhi),
asin(k * cosDeltaGamma + y * sinDeltaGamma)
];
}
rotation.invert = function(lambda, phi) {
var cosPhi = cos(phi),
x = cos(lambda) * cosPhi,
y = sin(lambda) * cosPhi,
z = sin(phi),
k = z * cosDeltaGamma - y * sinDeltaGamma;
return [
atan2(y * cosDeltaGamma + z * sinDeltaGamma, x * cosDeltaPhi + k * sinDeltaPhi),
asin(k * cosDeltaPhi - x * sinDeltaPhi)
];
};
return rotation;
}
/* harmony default export */ var src_rotation = (function(rotate) {
rotate = rotateRadians(rotate[0] * radians, rotate[1] * radians, rotate.length > 2 ? rotate[2] * radians : 0);
function forward(coordinates) {
coordinates = rotate(coordinates[0] * radians, coordinates[1] * radians);
return coordinates[0] *= degrees, coordinates[1] *= degrees, coordinates;
}
forward.invert = function(coordinates) {
coordinates = rotate.invert(coordinates[0] * radians, coordinates[1] * radians);
return coordinates[0] *= degrees, coordinates[1] *= degrees, coordinates;
};
return forward;
});
// CONCATENATED MODULE: ./node_modules/react-simple-maps/node_modules/d3-geo/src/circle.js
// Generates a circle centered at [0°, 0°], with a given radius and precision.
function circleStream(stream, radius, delta, direction, t0, t1) {
if (!delta) return;
var cosRadius = cos(radius),
sinRadius = sin(radius),
step = direction * delta;
if (t0 == null) {
t0 = radius + direction * tau;
t1 = radius - step / 2;
} else {
t0 = circleRadius(cosRadius, t0);
t1 = circleRadius(cosRadius, t1);
if (direction > 0 ? t0 < t1 : t0 > t1) t0 += direction * tau;
}
for (var point, t = t0; direction > 0 ? t > t1 : t < t1; t -= step) {
point = cartesian_spherical([cosRadius, -sinRadius * cos(t), -sinRadius * sin(t)]);
stream.point(point[0], point[1]);
}
}
// Returns the signed angle of a cartesian point relative to [cosRadius, 0, 0].
function circleRadius(cosRadius, point) {
point = cartesian_cartesian(point), point[0] -= cosRadius;
cartesianNormalizeInPlace(point);
var radius = acos(-point[1]);
return ((-point[2] < 0 ? -radius : radius) + tau - epsilon) % tau;
}
/* harmony default export */ var src_circle = (function() {
var center = constant([0, 0]),
radius = constant(90),
precision = constant(6),
ring,
rotate,
stream = {point: point};
function point(x, y) {
ring.push(x = rotate(x, y));
x[0] *= degrees, x[1] *= degrees;
}
function circle() {
var c = center.apply(this, arguments),
r = radius.apply(this, arguments) * radians,
p = precision.apply(this, arguments) * radians;
ring = [];
rotate = rotateRadians(-c[0] * radians, -c[1] * radians, 0).invert;
circleStream(stream, r, p, 1);
c = {type: "Polygon", coordinates: [ring]};
ring = rotate = null;
return c;
}
circle.center = function(_) {
return arguments.length ? (center = typeof _ === "function" ? _ : constant([+_[0], +_[1]]), circle) : center;
};
circle.radius = function(_) {
return arguments.length ? (radius = typeof _ === "function" ? _ : constant(+_), circle) : radius;
};
circle.precision = function(_) {
return arguments.length ? (precision = typeof _ === "function" ? _ : constant(+_), circle) : precision;
};
return circle;
});
// CONCATENATED MODULE: ./node_modules/react-simple-maps/node_modules/d3-geo/src/clip/buffer.js
/* harmony default export */ var buffer = (function() {
var lines = [],
line;
return {
point: function(x, y) {
line.push([x, y]);
},
lineStart: function() {
lines.push(line = []);
},
lineEnd: noop,
rejoin: function() {
if (lines.length > 1) lines.push(lines.pop().concat(lines.shift()));
},
result: function() {
var result = lines;
lines = [];
line = null;
return result;
}
};
});
// CONCATENATED MODULE: ./node_modules/react-simple-maps/node_modules/d3-geo/src/clip/line.js
/* harmony default export */ var clip_line = (function(a, b, x0, y0, x1, y1) {
var ax = a[0],
ay = a[1],
bx = b[0],
by = b[1],
t0 = 0,
t1 = 1,
dx = bx - ax,
dy = by - ay,
r;
r = x0 - ax;
if (!dx && r > 0) return;
r /= dx;
if (dx < 0) {
if (r < t0) return;
if (r < t1) t1 = r;
} else if (dx > 0) {
if (r > t1) return;
if (r > t0) t0 = r;
}
r = x1 - ax;
if (!dx && r < 0) return;
r /= dx;
if (dx < 0) {
if (r > t1) return;
if (r > t0) t0 = r;
} else if (dx > 0) {
if (r < t0) return;
if (r < t1) t1 = r;
}
r = y0 - ay;
if (!dy && r > 0) return;
r /= dy;
if (dy < 0) {
if (r < t0) return;
if (r < t1) t1 = r;
} else if (dy > 0) {
if (r > t1) return;
if (r > t0) t0 = r;
}
r = y1 - ay;
if (!dy && r < 0) return;
r /= dy;
if (dy < 0) {
if (r > t1) return;
if (r > t0) t0 = r;
} else if (dy > 0) {
if (r < t0) return;
if (r < t1) t1 = r;
}
if (t0 > 0) a[0] = ax + t0 * dx, a[1] = ay + t0 * dy;
if (t1 < 1) b[0] = ax + t1 * dx, b[1] = ay + t1 * dy;
return true;
});
// CONCATENATED MODULE: ./node_modules/react-simple-maps/node_modules/d3-geo/src/pointEqual.js
/* harmony default export */ var pointEqual = (function(a, b) {
return abs(a[0] - b[0]) < epsilon && abs(a[1] - b[1]) < epsilon;
});
// CONCATENATED MODULE: ./node_modules/react-simple-maps/node_modules/d3-geo/src/clip/polygon.js
function Intersection(point, points, other, entry) {
this.x = point;
this.z = points;
this.o = other; // another intersection
this.e = entry; // is an entry?
this.v = false; // visited
this.n = this.p = null; // next & previous
}
// A generalized polygon clipping algorithm: given a polygon that has been cut
// into its visible line segments, and rejoins the segments by interpolating
// along the clip edge.
/* harmony default export */ var clip_polygon = (function(segments, compareIntersection, startInside, interpolate, stream) {
var subject = [],
clip = [],
i,
n;
segments.forEach(function(segment) {
if ((n = segment.length - 1) <= 0) return;
var n, p0 = segment[0], p1 = segment[n], x;
// If the first and last points of a segment are coincident, then treat as a
// closed ring. TODO if all rings are closed, then the winding order of the
// exterior ring should be checked.
if (pointEqual(p0, p1)) {
stream.lineStart();
for (i = 0; i < n; ++i) stream.point((p0 = segment[i])[0], p0[1]);
stream.lineEnd();
return;
}
subject.push(x = new Intersection(p0, segment, null, true));
clip.push(x.o = new Intersection(p0, null, x, false));
subject.push(x = new Intersection(p1, segment, null, false));
clip.push(x.o = new Intersection(p1, null, x, true));
});
if (!subject.length) return;
clip.sort(compareIntersection);
polygon_link(subject);
polygon_link(clip);
for (i = 0, n = clip.length; i < n; ++i) {
clip[i].e = startInside = !startInside;
}
var start = subject[0],
points,
point;
while (1) {
// Find first unvisited intersection.
var current = start,
isSubject = true;
while (current.v) if ((current = current.n) === start) return;
points = current.z;
stream.lineStart();
do {
current.v = current.o.v = true;
if (current.e) {
if (isSubject) {
for (i = 0, n = points.length; i < n; ++i) stream.point((point = points[i])[0], point[1]);
} else {
interpolate(current.x, current.n.x, 1, stream);
}
current = current.n;
} else {
if (isSubject) {
points = current.p.z;
for (i = points.length - 1; i >= 0; --i) stream.point((point = points[i])[0], point[1]);
} else {
interpolate(current.x, current.p.x, -1, stream);
}
current = current.p;
}
current = current.o;
points = current.z;
isSubject = !isSubject;
} while (!current.v);
stream.lineEnd();
}
});
function polygon_link(array) {
if (!(n = array.length)) return;
var n,
i = 0,
a = array[0],
b;
while (++i < n) {
a.n = b = array[i];
b.p = a;
a = b;
}
a.n = b = array[0];
b.p = a;
}
// EXTERNAL MODULE: ./node_modules/d3-array/index.js + 31 modules
var d3_array = __webpack_require__(65);
// CONCATENATED MODULE: ./node_modules/react-simple-maps/node_modules/d3-geo/src/clip/extent.js
var clipMax = 1e9, clipMin = -clipMax;
// TODO Use d3-polygon’s polygonContains here for the ring check?
// TODO Eliminate duplicate buffering in clipBuffer and polygon.push?
function extent_clipExtent(x0, y0, x1, y1) {
function visible(x, y) {
return x0 <= x && x <= x1 && y0 <= y && y <= y1;
}
function interpolate(from, to, direction, stream) {
var a = 0, a1 = 0;
if (from == null
|| (a = corner(from, direction)) !== (a1 = corner(to, direction))
|| comparePoint(from, to) < 0 ^ direction > 0) {
do stream.point(a === 0 || a === 3 ? x0 : x1, a > 1 ? y1 : y0);
while ((a = (a + direction + 4) % 4) !== a1);
} else {
stream.point(to[0], to[1]);
}
}
function corner(p, direction) {
return abs(p[0] - x0) < epsilon ? direction > 0 ? 0 : 3
: abs(p[0] - x1) < epsilon ? direction > 0 ? 2 : 1
: abs(p[1] - y0) < epsilon ? direction > 0 ? 1 : 0
: direction > 0 ? 3 : 2; // abs(p[1] - y1) < epsilon
}
function compareIntersection(a, b) {
return comparePoint(a.x, b.x);
}
function comparePoint(a, b) {
var ca = corner(a, 1),
cb = corner(b, 1);
return ca !== cb ? ca - cb
: ca === 0 ? b[1] - a[1]
: ca === 1 ? a[0] - b[0]
: ca === 2 ? a[1] - b[1]
: b[0] - a[0];
}
return function(stream) {
var activeStream = stream,
bufferStream = buffer(),
segments,
polygon,
ring,
x__, y__, v__, // first point
x_, y_, v_, // previous point
first,
clean;
var clipStream = {
point: point,
lineStart: lineStart,
lineEnd: lineEnd,
polygonStart: polygonStart,
polygonEnd: polygonEnd
};
function point(x, y) {
if (visible(x, y)) activeStream.point(x, y);
}
function polygonInside() {
var winding = 0;
for (var i = 0, n = polygon.length; i < n; ++i) {
for (var ring = polygon[i], j = 1, m = ring.length, point = ring[0], a0, a1, b0 = point[0], b1 = point[1]; j < m; ++j) {
a0 = b0, a1 = b1, point = ring[j], b0 = point[0], b1 = point[1];
if (a1 <= y1) { if (b1 > y1 && (b0 - a0) * (y1 - a1) > (b1 - a1) * (x0 - a0)) ++winding; }
else { if (b1 <= y1 && (b0 - a0) * (y1 - a1) < (b1 - a1) * (x0 - a0)) --winding; }
}
}
return winding;
}
// Buffer geometry within a polygon and then clip it en masse.
function polygonStart() {
activeStream = bufferStream, segments = [], polygon = [], clean = true;
}
function polygonEnd() {
var startInside = polygonInside(),
cleanInside = clean && startInside,
visible = (segments = Object(d3_array["d" /* merge */])(segments)).length;
if (cleanInside || visible) {
stream.polygonStart();
if (cleanInside) {
stream.lineStart();
interpolate(null, null, 1, stream);
stream.lineEnd();
}
if (visible) {
clip_polygon(segments, compareIntersection, startInside, interpolate, stream);
}
stream.polygonEnd();
}
activeStream = stream, segments = polygon = ring = null;
}
function lineStart() {
clipStream.point = linePoint;
if (polygon) polygon.push(ring = []);
first = true;
v_ = false;
x_ = y_ = NaN;
}
// TODO rather than special-case polygons, simply handle them separately.
// Ideally, coincident intersection points should be jittered to avoid
// clipping issues.
function lineEnd() {
if (segments) {
linePoint(x__, y__);
if (v__ && v_) bufferStream.rejoin();
segments.push(bufferStream.result());
}
clipStream.point = point;
if (v_) activeStream.lineEnd();
}
function linePoint(x, y) {
var v = visible(x, y);
if (polygon) ring.push([x, y]);
if (first) {
x__ = x, y__ = y, v__ = v;
first = false;
if (v) {
activeStream.lineStart();
activeStream.point(x, y);
}
} else {
if (v && v_) activeStream.point(x, y);
else {
var a = [x_ = Math.max(clipMin, Math.min(clipMax, x_)), y_ = Math.max(clipMin, Math.min(clipMax, y_))],
b = [x = Math.max(clipMin, Math.min(clipMax, x)), y = Math.max(clipMin, Math.min(clipMax, y))];
if (clip_line(a, b, x0, y0, x1, y1)) {
if (!v_) {
activeStream.lineStart();
activeStream.point(a[0], a[1]);
}
activeStream.point(b[0], b[1]);
if (!v) activeStream.lineEnd();
clean = false;
} else if (v) {
activeStream.lineStart();
activeStream.point(x, y);
clean = false;
}
}
}
x_ = x, y_ = y, v_ = v;
}
return clipStream;
};
}
/* harmony default export */ var clip_extent = (function() {
var x0 = 0,
y0 = 0,
x1 = 960,
y1 = 500,
cache,
cacheStream,
clip;
return clip = {
stream: function(stream) {
return cache && cacheStream === stream ? cache : cache = extent_clipExtent(x0, y0, x1, y1)(cacheStream = stream);
},
extent: function(_) {
return arguments.length ? (x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1], cache = cacheStream = null, clip) : [[x0, y0], [x1, y1]];
}
};
});
// CONCATENATED MODULE: ./node_modules/react-simple-maps/node_modules/d3-geo/src/polygonContains.js
var sum = adder();
/* harmony default export */ var polygonContains = (function(polygon, point) {
var lambda = point[0],
phi = point[1],
normal = [sin(lambda), -cos(lambda), 0],
angle = 0,
winding = 0;
sum.reset();
for (var i = 0, n = polygon.length; i < n; ++i) {
if (!(m = (ring = polygon[i]).length)) continue;
var ring,
m,
point0 = ring[m - 1],
lambda0 = point0[0],
phi0 = point0[1] / 2 + quarterPi,
sinPhi0 = sin(phi0),
cosPhi0 = cos(phi0);
for (var j = 0; j < m; ++j, lambda0 = lambda1, sinPhi0 = sinPhi1, cosPhi0 = cosPhi1, point0 = point1) {
var point1 = ring[j],
lambda1 = point1[0],
phi1 = point1[1] / 2 + quarterPi,
sinPhi1 = sin(phi1),
cosPhi1 = cos(phi1),
delta = lambda1 - lambda0,
sign = delta >= 0 ? 1 : -1,
absDelta = sign * delta,
antimeridian = absDelta > pi,
k = sinPhi0 * sinPhi1;
sum.add(atan2(k * sign * sin(absDelta), cosPhi0 * cosPhi1 + k * cos(absDelta)));
angle += antimeridian ? delta + sign * tau : delta;
// Are the longitudes either side of the point’s meridian (lambda),
// and are the latitudes smaller than the parallel (phi)?
if (antimeridian ^ lambda0 >= lambda ^ lambda1 >= lambda) {
var arc = cartesianCross(cartesian_cartesian(point0), cartesian_cartesian(point1));
cartesianNormalizeInPlace(arc);
var intersection = cartesianCross(normal, arc);
cartesianNormalizeInPlace(intersection);
var phiArc = (antimeridian ^ delta >= 0 ? -1 : 1) * asin(intersection[2]);
if (phi > phiArc || phi === phiArc && (arc[0] || arc[1])) {
winding += antimeridian ^ delta >= 0 ? 1 : -1;
}
}
}
}
// First, determine whether the South pole is inside or outside:
//
// It is inside if:
// * the polygon winds around it in a clockwise direction.
// * the polygon does not (cumulatively) wind around it, but has a negative
// (counter-clockwise) area.
//
// Second, count the (signed) number of times a segment crosses a lambda
// from the point to the South pole. If it is zero, then the point is the
// same side as the South pole.
return (angle < -epsilon || angle < epsilon && sum < -epsilon) ^ (winding & 1);
});
// CONCATENATED MODULE: ./node_modules/react-simple-maps/node_modules/d3-geo/src/length.js
var lengthSum = adder(),
length_lambda0,
length_sinPhi0,
length_cosPhi0;
var lengthStream = {
sphere: noop,
point: noop,
lineStart: lengthLineStart,
lineEnd: noop,
polygonStart: noop,
polygonEnd: noop
};
function lengthLineStart() {
lengthStream.point = lengthPointFirst;
lengthStream.lineEnd = lengthLineEnd;
}
function lengthLineEnd() {
lengthStream.point = lengthStream.lineEnd = noop;
}
function lengthPointFirst(lambda, phi) {
lambda *= radians, phi *= radians;
length_lambda0 = lambda, length_sinPhi0 = sin(phi), length_cosPhi0 = cos(phi);
lengthStream.point = lengthPoint;
}
function lengthPoint(lambda, phi) {
lambda *= radians, phi *= radians;
var sinPhi = sin(phi),
cosPhi = cos(phi),
delta = abs(lambda - length_lambda0),
cosDelta = cos(delta),
sinDelta = sin(delta),
x = cosPhi * sinDelta,
y = length_cosPhi0 * sinPhi - length_sinPhi0 * cosPhi * cosDelta,
z = length_sinPhi0 * sinPhi + length_cosPhi0 * cosPhi * cosDelta;
lengthSum.add(atan2(sqrt(x * x + y * y), z));
length_lambda0 = lambda, length_sinPhi0 = sinPhi, length_cosPhi0 = cosPhi;
}
/* harmony default export */ var src_length = (function(object) {
lengthSum.reset();
src_stream(object, lengthStream);
return +lengthSum;
});
// CONCATENATED MODULE: ./node_modules/react-simple-maps/node_modules/d3-geo/src/distance.js
var distance_coordinates = [null, null],
distance_object = {type: "LineString", coordinates: distance_coordinates};
/* harmony default export */ var distance = (function(a, b) {
distance_coordinates[0] = a;
distance_coordinates[1] = b;
return src_length(distance_object);
});
// CONCATENATED MODULE: ./node_modules/react-simple-maps/node_modules/d3-geo/src/contains.js
var containsObjectType = {
Feature: function(object, point) {
return containsGeometry(object.geometry, point);
},
FeatureCollection: function(object, point) {
var features = object.features, i = -1, n = features.length;
while (++i < n) if (containsGeometry(features[i].geometry, point)) return true;
return false;
}
};
var containsGeometryType = {
Sphere: function() {
return true;
},
Point: function(object, point) {
return containsPoint(object.coordinates, point);
},
MultiPoint: function(object, point) {
var coordinates = object.coordinates, i = -1, n = coordinates.length;
while (++i < n) if (containsPoint(coordinates[i], point)) return true;
return false;
},
LineString: function(object, point) {
return containsLine(object.coordinates, point);
},
MultiLineString: function(object, point) {
var coordinates = object.coordinates, i = -1, n = coordinates.length;
while (++i < n) if (containsLine(coordinates[i], point)) return true;
return false;
},
Polygon: function(object, point) {
return containsPolygon(object.coordinates, point);
},
MultiPolygon: function(object, point) {
var coordinates = object.coordinates, i = -1, n = coordinates.length;
while (++i < n) if (containsPolygon(coordinates[i], point)) return true;
return false;
},
GeometryCollection: function(object, point) {
var geometries = object.geometries, i = -1, n = geometries.length;
while (++i < n) if (containsGeometry(geometries[i], point)) return true;
return false;
}
};
function containsGeometry(geometry, point) {
return geometry && containsGeometryType.hasOwnProperty(geometry.type)
? containsGeometryType[geometry.type](geometry, point)
: false;
}
function containsPoint(coordinates, point) {
return distance(coordinates, point) === 0;
}
function containsLine(coordinates, point) {
var ab = distance(coordinates[0], coordinates[1]),
ao = distance(coordinates[0], point),
ob = distance(point, coordinates[1]);
return ao + ob <= ab + epsilon;
}
function containsPolygon(coordinates, point) {
return !!polygonContains(coordinates.map(ringRadians), pointRadians(point));
}
function ringRadians(ring) {
return ring = ring.map(pointRadians), ring.pop(), ring;
}
function pointRadians(point) {
return [point[0] * radians, point[1] * radians];
}
/* harmony default export */ var contains = (function(object, point) {
return (object && containsObjectType.hasOwnProperty(object.type)
? containsObjectType[object.type]
: containsGeometry)(object, point);
});
// CONCATENATED MODULE: ./node_modules/react-simple-maps/node_modules/d3-geo/src/graticule.js
function graticuleX(y0, y1, dy) {
var y = Object(d3_array["f" /* range */])(y0, y1 - epsilon, dy).concat(y1);
return function(x) { return y.map(function(y) { return [x, y]; }); };
}
function graticuleY(x0, x1, dx) {
var x = Object(d3_array["f" /* range */])(x0, x1 - epsilon, dx).concat(x1);
return function(y) { return x.map(function(x) { return [x, y]; }); };
}
function graticule_graticule() {
var x1, x0, X1, X0,
y1, y0, Y1, Y0,
dx = 10, dy = dx, DX = 90, DY = 360,
x, y, X, Y,
precision = 2.5;
function graticule() {
return {type: "MultiLineString", coordinates: lines()};
}
function lines() {
return Object(d3_array["f" /* range */])(ceil(X0 / DX) * DX, X1, DX).map(X)
.concat(Object(d3_array["f" /* range */])(ceil(Y0 / DY) * DY, Y1, DY).map(Y))
.concat(Object(d3_array["f" /* range */])(ceil(x0 / dx) * dx, x1, dx).filter(function(x) { return abs(x % DX) > epsilon; }).map(x))
.concat(Object(d3_array["f" /* range */])(ceil(y0 / dy) * dy, y1, dy).filter(function(y) { return abs(y % DY) > epsilon; }).map(y));
}
graticule.lines = function() {
return lines().map(function(coordinates) { return {type: "LineString", coordinates: coordinates}; });
};
graticule.outline = function() {
return {
type: "Polygon",
coordinates: [
X(X0).concat(
Y(Y1).slice(1),
X(X1).reverse().slice(1),
Y(Y0).reverse().slice(1))
]
};
};
graticule.extent = function(_) {
if (!arguments.length) return graticule.extentMinor();
return graticule.extentMajor(_).extentMinor(_);
};
graticule.extentMajor = function(_) {
if (!arguments.length) return [[X0, Y0], [X1, Y1]];
X0 = +_[0][0], X1 = +_[1][0];
Y0 = +_[0][1], Y1 = +_[1][1];
if (X0 > X1) _ = X0, X0 = X1, X1 = _;
if (Y0 > Y1) _ = Y0, Y0 = Y1, Y1 = _;
return graticule.precision(precision);
};
graticule.extentMinor = function(_) {
if (!arguments.length) return [[x0, y0], [x1, y1]];
x0 = +_[0][0], x1 = +_[1][0];
y0 = +_[0][1], y1 = +_[1][1];
if (x0 > x1) _ = x0, x0 = x1, x1 = _;
if (y0 > y1) _ = y0, y0 = y1, y1 = _;
return graticule.precision(precision);
};
graticule.step = function(_) {
if (!arguments.length) return graticule.stepMinor();
return graticule.stepMajor(_).stepMinor(_);
};
graticule.stepMajor = function(_) {
if (!arguments.length) return [DX, DY];
DX = +_[0], DY = +_[1];
return graticule;
};
graticule.stepMinor = function(_) {
if (!arguments.length) return [dx, dy];
dx = +_[0], dy = +_[1];
return graticule;
};
graticule.precision = function(_) {
if (!arguments.length) return precision;
precision = +_;
x = graticuleX(y0, y1, 90);
y = graticuleY(x0, x1, precision);
X = graticuleX(Y0, Y1, 90);
Y = graticuleY(X0, X1, precision);
return graticule;
};
return graticule
.extentMajor([[-180, -90 + epsilon], [180, 90 - epsilon]])
.extentMinor([[-180, -80 - epsilon], [180, 80 + epsilon]]);
}
function graticule10() {
return graticule_graticule()();
}
// CONCATENATED MODULE: ./node_modules/react-simple-maps/node_modules/d3-geo/src/interpolate.js
/* harmony default export */ var src_interpolate = (function(a, b) {
var x0 = a[0] * radians,
y0 = a[1] * radians,
x1 = b[0] * radians,
y1 = b[1] * radians,
cy0 = cos(y0),
sy0 = sin(y0),
cy1 = cos(y1),
sy1 = sin(y1),
kx0 = cy0 * cos(x0),
ky0 = cy0 * sin(x0),
kx1 = cy1 * cos(x1),
ky1 = cy1 * sin(x1),
d = 2 * asin(sqrt(haversin(y1 - y0) + cy0 * cy1 * haversin(x1 - x0))),
k = sin(d);
var interpolate = d ? function(t) {
var B = sin(t *= d) / k,
A = sin(d - t) / k,
x = A * kx0 + B * kx1,
y = A * ky0 + B * ky1,
z = A * sy0 + B * sy1;
return [
atan2(y, x) * degrees,
atan2(z, sqrt(x * x + y * y)) * degrees
];
} : function() {
return [x0 * degrees, y0 * degrees];
};
interpolate.distance = d;
return interpolate;
});
// CONCATENATED MODULE: ./node_modules/react-simple-maps/node_modules/d3-geo/src/identity.js
/* harmony