claude-flow-tbowman01
Version:
Enterprise-grade AI agent orchestration with ruv-swarm integration (Alpha Release)
294 lines (243 loc) โข 8.82 kB
Markdown
---
name: sparc
description: Execute SPARC methodology workflows with batchtools optimization
---
# SPARC Development Methodology (Batchtools Optimized)
SPARC with batchtools enables parallel execution of development phases, concurrent multi-mode operations, and efficient batch processing across the entire development lifecycle.
## Enhanced SPARC Modes with Batch Capabilities
### Core Development Modes (Parallelized)
- `/sparc-architect` - ๐๏ธ Parallel architecture design across components
- `/sparc-code` - ๐ง Concurrent auto-coding for multiple modules
- `/sparc-tdd` - ๐งช Parallel test suite development
- `/sparc-debug` - ๐ชฒ Concurrent debugging across systems
- `/sparc-security-review` - ๐ก๏ธ Parallel security analysis
- `/sparc-docs-writer` - ๐ Batch documentation generation
- `/sparc-integration` - ๐ Parallel system integration
- `/sparc-refinement-optimization-mode` - ๐งน Concurrent optimization
### Batch Mode Operations
- `/sparc-batch` - ๐ Execute multiple modes in parallel
- `/sparc-pipeline` - ๐ Pipeline mode execution
- `/sparc-distributed` - ๐ Distributed SPARC processing
- `/sparc-concurrent` - โก Concurrent phase execution
## Batch Quick Start
### Parallel Mode Execution:
```bash
# Execute multiple modes concurrently
npx claude-flow sparc batch-run --modes '{
"architect": "Design user service",
"code": "Implement auth module",
"tdd": "Create test suite",
"docs": "Generate API documentation"
}' --parallel
# Pipeline execution with dependencies
npx claude-flow sparc pipeline --stages '[
{ "mode": "spec-pseudocode", "tasks": ["auth", "user", "api"] },
{ "mode": "architect", "depends": ["spec-pseudocode"] },
{ "mode": "tdd", "parallel": true },
{ "mode": "code", "depends": ["tdd"] }
]'
```
### Batch TDD Workflow:
```bash
# Parallel TDD for multiple features
npx claude-flow sparc batch-tdd --features '{
"authentication": { "priority": "high", "coverage": "95%" },
"user-management": { "priority": "medium", "coverage": "90%" },
"api-gateway": { "priority": "high", "coverage": "95%" }
}' --parallel --monitor
```
### Concurrent Analysis:
```bash
# Analyze multiple components in parallel
npx claude-flow sparc batch-analyze --components '{
"frontend": ["architecture", "performance", "security"],
"backend": ["architecture", "performance", "security", "scalability"],
"database": ["schema", "performance", "security"]
}' --concurrent --report
```
## Enhanced SPARC Workflow with Parallelization
### 1. **Parallel Specification Phase**
```bash
# Define specifications for multiple components concurrently
npx claude-flow sparc batch-spec --components '[
{ "name": "auth-service", "requirements": "OAuth2, JWT, MFA" },
{ "name": "user-service", "requirements": "CRUD, profiles, preferences" },
{ "name": "notification-service", "requirements": "email, SMS, push" }
]' --parallel --validate
```
### 2. **Concurrent Pseudocode Development**
```bash
# Generate pseudocode for multiple algorithms
npx claude-flow sparc batch-pseudocode --algorithms '{
"data-processing": ["sorting", "filtering", "aggregation"],
"authentication": ["login", "refresh", "logout"],
"caching": ["get", "set", "invalidate"]
}' --optimize --parallel
```
### 3. **Distributed Architecture Design**
```bash
# Design architecture for microservices in parallel
npx claude-flow sparc distributed-architect --services '[
"auth", "user", "product", "order", "payment", "notification"
]' --patterns "microservices" --concurrent --visualize
```
### 4. **Massive Parallel TDD Implementation**
```bash
# Execute TDD across multiple modules
npx claude-flow sparc parallel-tdd --config '{
"modules": {
"core": { "tests": 50, "workers": 3 },
"api": { "tests": 100, "workers": 5 },
"ui": { "tests": 75, "workers": 4 }
},
"coverage": { "target": "95%", "strict": true }
}' --watch --report
```
### 5. **Batch Integration & Validation**
```bash
# Integrate and validate multiple components
npx claude-flow sparc batch-integrate --components '[
{ "name": "frontend", "deps": ["api"] },
{ "name": "api", "deps": ["database", "cache"] },
{ "name": "workers", "deps": ["queue", "storage"] }
]' --test --validate --parallel
```
## Advanced Batch Memory Integration
### Parallel Memory Operations
```bash
# Store analysis results concurrently
npx claude-flow sparc batch-memory-store --data '{
"arch_decisions": { "namespace": "architecture", "parallel": true },
"test_results": { "namespace": "testing", "compress": true },
"perf_metrics": { "namespace": "performance", "index": true }
}'
# Query across multiple namespaces
npx claude-flow sparc batch-memory-query --queries '[
{ "pattern": "auth*", "namespace": "specs" },
{ "pattern": "test*", "namespace": "testing" },
{ "pattern": "perf*", "namespace": "metrics" }
]' --parallel --aggregate
```
## Batch Swarm Integration
### Multi-Mode Swarm Execution
```bash
# Complex project with parallel SPARC modes
npx claude-flow sparc swarm-batch --project "enterprise-app" --config '{
"phases": [
{
"name": "design",
"modes": ["spec-pseudocode", "architect"],
"parallel": true,
"agents": 6
},
{
"name": "implementation",
"modes": ["tdd", "code", "integration"],
"parallel": true,
"agents": 10
},
{
"name": "quality",
"modes": ["security-review", "optimization", "docs"],
"parallel": true,
"agents": 5
}
]
}' --monitor --checkpoint
```
## Performance Optimization Features
### Intelligent Work Distribution
```bash
# Distribute SPARC tasks based on complexity
npx claude-flow sparc distribute --analysis '{
"complexity": { "weight": 0.4, "method": "cyclomatic" },
"dependencies": { "weight": 0.3, "method": "graph" },
"priority": { "weight": 0.3, "method": "user-defined" }
}' --balance --monitor
```
### Caching and Memoization
```bash
# Enable smart caching for SPARC operations
npx claude-flow sparc cache-config --settings '{
"specifications": { "ttl": "7d", "size": "100MB" },
"architecture": { "ttl": "3d", "size": "500MB" },
"test-results": { "ttl": "1d", "size": "1GB" },
"code-analysis": { "ttl": "1h", "size": "2GB" }
}' --optimize
```
## Complex Workflow Examples
### Enterprise Application Development
```bash
# Full SPARC workflow with maximum parallelization
npx claude-flow sparc enterprise-flow --project "fintech-platform" --parallel-config '{
"specification": {
"teams": ["payments", "accounts", "reporting", "compliance"],
"parallel": true,
"duration": "2d"
},
"architecture": {
"components": 15,
"parallel": true,
"review-cycles": 3
},
"implementation": {
"modules": 50,
"parallel-factor": 10,
"tdd-coverage": "95%"
},
"integration": {
"environments": ["dev", "staging", "prod"],
"parallel-deploy": true
}
}' --monitor --report --checkpoint
```
### Microservices Migration
```bash
# Parallel SPARC-driven migration
npx claude-flow sparc migrate-batch --from "monolith" --to "microservices" --strategy '{
"analysis": { "parallel": 5, "tools": ["dependency", "complexity", "coupling"] },
"decomposition": { "parallel": 3, "method": "domain-driven" },
"implementation": { "parallel": 10, "pattern": "strangler-fig" },
"validation": { "parallel": 5, "tests": ["unit", "integration", "e2e"] }
}' --rollback-enabled
```
### AI/ML Pipeline Development
```bash
# SPARC for ML pipeline with parallel processing
npx claude-flow sparc ml-pipeline --config '{
"data-pipeline": {
"stages": ["ingestion", "cleaning", "transformation", "validation"],
"parallel": 4
},
"model-development": {
"experiments": 20,
"parallel": 5,
"frameworks": ["tensorflow", "pytorch", "scikit-learn"]
},
"deployment": {
"targets": ["api", "batch", "streaming"],
"parallel": true
}
}' --gpu-enabled --distributed
```
## Monitoring and Analytics
### Real-time Batch Monitoring
```bash
# Monitor all SPARC operations
npx claude-flow sparc monitor-batch --dashboards '[
"specification-progress",
"architecture-reviews",
"tdd-coverage",
"integration-status",
"performance-metrics"
]' --real-time --alerts
```
### Performance Analytics
```bash
# Analyze SPARC workflow efficiency
npx claude-flow sparc analyze-performance --metrics '{
"throughput": ["tasks/hour", "loc/day"],
"quality": ["bug-density", "test-coverage"],
"efficiency": ["reuse-ratio", "automation-level"]
}' --compare-baseline --recommendations
```