UNPKG

claude-flow-tbowman01

Version:

Enterprise-grade AI agent orchestration with ruv-swarm integration (Alpha Release)

1,511 lines (1,384 loc) 44.9 kB
import { EventEmitter } from 'events'; import { writeFile, readFile, mkdir, readdir } from 'fs/promises'; import { join } from 'path'; import { Logger } from '../core/logger.js'; import { ConfigManager } from '../core/config.js'; export interface AnalyticsMetric { id: string; name: string; description: string; type: 'counter' | 'gauge' | 'histogram' | 'summary'; category: 'performance' | 'usage' | 'business' | 'technical' | 'security' | 'cost'; unit: string; value: number; tags: Record<string, string>; timestamp: Date; source: string; metadata: Record<string, any>; } export interface AnalyticsDashboard { id: string; name: string; description: string; type: 'operational' | 'executive' | 'technical' | 'business' | 'security' | 'custom'; widgets: DashboardWidget[]; layout: DashboardLayout; permissions: { viewers: string[]; editors: string[]; public: boolean; }; schedule: { autoRefresh: boolean; refreshInterval: number; // seconds exportSchedule?: { frequency: 'daily' | 'weekly' | 'monthly'; format: 'pdf' | 'png' | 'csv' | 'json'; recipients: string[]; }; }; filters: DashboardFilter[]; createdAt: Date; updatedAt: Date; createdBy: string; } export interface DashboardWidget { id: string; title: string; type: 'chart' | 'table' | 'metric' | 'gauge' | 'map' | 'text' | 'alert'; size: 'small' | 'medium' | 'large' | 'full-width'; position: { x: number; y: number; width: number; height: number }; dataSource: { query: string; metrics: string[]; aggregation: 'sum' | 'avg' | 'min' | 'max' | 'count' | 'p95' | 'p99'; timeRange: string; groupBy: string[]; }; visualization: { chartType?: 'line' | 'bar' | 'pie' | 'scatter' | 'heatmap' | 'area'; options: Record<string, any>; thresholds?: { warning: number; critical: number; }; }; alerts: { enabled: boolean; conditions: AlertCondition[]; }; } export interface DashboardLayout { columns: number; rows: number; grid: boolean; responsive: boolean; } export interface DashboardFilter { id: string; name: string; type: 'dropdown' | 'multiselect' | 'daterange' | 'text' | 'number'; field: string; values?: string[]; defaultValue?: any; required: boolean; } export interface AlertCondition { metric: string; operator: '>' | '<' | '>=' | '<=' | '==' | '!='; threshold: number; duration: number; // seconds severity: 'info' | 'warning' | 'critical'; } export interface AnalyticsInsight { id: string; title: string; description: string; type: 'anomaly' | 'trend' | 'correlation' | 'prediction' | 'recommendation'; category: 'performance' | 'usage' | 'business' | 'technical' | 'security' | 'cost'; confidence: number; // 0-100 impact: 'low' | 'medium' | 'high'; priority: 'low' | 'medium' | 'high' | 'critical'; data: { metrics: string[]; timeRange: { start: Date; end: Date }; values: Record<string, number>; baseline?: Record<string, number>; deviation?: number; }; recommendations: { action: string; effort: 'low' | 'medium' | 'high'; impact: string; implementation: string[]; }[]; status: 'new' | 'acknowledged' | 'investigating' | 'resolved' | 'dismissed'; assignedTo?: string; createdAt: Date; updatedAt: Date; expiresAt?: Date; } export interface PerformanceMetrics { system: { cpu: { usage: number; cores: number; loadAverage: number[]; }; memory: { used: number; free: number; total: number; usage: number; }; disk: { used: number; free: number; total: number; usage: number; iops: number; }; network: { bytesIn: number; bytesOut: number; packetsIn: number; packetsOut: number; errors: number; }; }; application: { responseTime: { avg: number; p50: number; p95: number; p99: number; }; throughput: { requestsPerSecond: number; transactionsPerSecond: number; }; errors: { rate: number; count: number; types: Record<string, number>; }; availability: { uptime: number; sla: number; incidents: number; }; }; database: { connections: { active: number; idle: number; max: number; }; queries: { avgExecutionTime: number; slowQueries: number; deadlocks: number; }; storage: { size: number; growth: number; fragmentation: number; }; }; infrastructure: { containers: { running: number; stopped: number; restarts: number; }; services: { healthy: number; unhealthy: number; degraded: number; }; }; } export interface UsageMetrics { users: { total: number; active: number; new: number; returning: number; churn: number; }; sessions: { total: number; duration: { avg: number; median: number; }; bounceRate: number; pagesPerSession: number; }; features: { adoption: Record< string, { users: number; usage: number; retention: number; } >; mostUsed: string[]; leastUsed: string[]; }; api: { calls: number; uniqueConsumers: number; avgResponseTime: number; errorRate: number; rateLimits: { hit: number; consumed: number; }; }; content: { created: number; modified: number; deleted: number; views: number; }; } export interface BusinessMetrics { revenue: { total: number; recurring: number; growth: number; arpu: number; // Average Revenue Per User ltv: number; // Lifetime Value }; customers: { total: number; new: number; retained: number; churned: number; satisfaction: number; }; conversion: { leads: number; qualified: number; opportunities: number; closed: number; rate: number; }; support: { tickets: number; resolved: number; avgResolutionTime: number; satisfaction: number; }; } export interface PredictiveModel { id: string; name: string; description: string; type: 'regression' | 'classification' | 'time-series' | 'anomaly-detection'; algorithm: string; features: string[]; target: string; accuracy: number; confidence: number; trainedAt: Date; lastPrediction?: Date; trainingData: { samples: number; features: number; timeRange: { start: Date; end: Date }; }; performance: { precision: number; recall: number; f1Score: number; mse?: number; mae?: number; }; predictions: PredictionResult[]; status: 'training' | 'ready' | 'needs-retraining' | 'error'; } export interface PredictionResult { id: string; modelId: string; input: Record<string, any>; prediction: any; confidence: number; timestamp: Date; actual?: any; // For validation accuracy?: number; } export interface AnalyticsReport { id: string; name: string; description: string; type: 'performance' | 'usage' | 'business' | 'security' | 'compliance' | 'custom'; format: 'pdf' | 'html' | 'csv' | 'json' | 'xlsx'; schedule: { frequency: 'manual' | 'hourly' | 'daily' | 'weekly' | 'monthly' | 'quarterly'; time?: string; timezone?: string; recipients: string[]; }; sections: ReportSection[]; filters: Record<string, any>; lastGenerated?: Date; nextGeneration?: Date; generatedBy: string; createdAt: Date; updatedAt: Date; } export interface ReportSection { id: string; title: string; type: 'summary' | 'chart' | 'table' | 'text' | 'metrics'; content: { query?: string; visualization?: any; text?: string; metrics?: string[]; }; order: number; } export interface AnalyticsConfiguration { collection: { enabled: boolean; samplingRate: number; batchSize: number; flushInterval: number; }; storage: { retention: { raw: string; // e.g., '7d' aggregated: string; // e.g., '90d' summary: string; // e.g., '1y' }; compression: boolean; encryption: boolean; }; processing: { realTime: boolean; batchProcessing: boolean; aggregationIntervals: string[]; }; alerts: { enabled: boolean; channels: string[]; escalation: { levels: number; intervals: number[]; }; }; privacy: { anonymization: boolean; gdprCompliant: boolean; dataMinimization: boolean; }; integrations: { grafana?: { url: string; apiKey: string }; prometheus?: { url: string }; elasticsearch?: { url: string; index: string }; splunk?: { url: string; token: string }; }; } export class AnalyticsManager extends EventEmitter { private metrics: Map<string, AnalyticsMetric[]> = new Map(); private dashboards: Map<string, AnalyticsDashboard> = new Map(); private insights: Map<string, AnalyticsInsight> = new Map(); private models: Map<string, PredictiveModel> = new Map(); private reports: Map<string, AnalyticsReport> = new Map(); private analyticsPath: string; private logger: Logger; private config: ConfigManager; private configuration: AnalyticsConfiguration; constructor(analyticsPath: string = './analytics', logger?: Logger, config?: ConfigManager) { super(); this.analyticsPath = analyticsPath; this.logger = logger || new Logger({ level: 'info', format: 'text', destination: 'console' }); this.config = config || ConfigManager.getInstance(); this.configuration = this.getDefaultConfiguration(); } async initialize(): Promise<void> { try { await mkdir(this.analyticsPath, { recursive: true }); await mkdir(join(this.analyticsPath, 'metrics'), { recursive: true }); await mkdir(join(this.analyticsPath, 'dashboards'), { recursive: true }); await mkdir(join(this.analyticsPath, 'insights'), { recursive: true }); await mkdir(join(this.analyticsPath, 'models'), { recursive: true }); await mkdir(join(this.analyticsPath, 'reports'), { recursive: true }); await this.loadConfigurations(); await this.initializeDefaultDashboards(); await this.startMetricsCollection(); this.logger.info('Analytics Manager initialized successfully'); } catch (error) { this.logger.error('Failed to initialize Analytics Manager', { error }); throw error; } } async recordMetric(metric: Omit<AnalyticsMetric, 'id' | 'timestamp'>): Promise<void> { const fullMetric: AnalyticsMetric = { id: `metric-${Date.now()}-${Math.random().toString(36).substr(2, 9)}`, timestamp: new Date(), ...metric, }; const key = `${metric.category}-${metric.name}`; if (!this.metrics.has(key)) { this.metrics.set(key, []); } const metricArray = this.metrics.get(key)!; metricArray.push(fullMetric); // Keep only recent metrics in memory (configurable retention) const retentionPeriod = 24 * 60 * 60 * 1000; // 24 hours const cutoff = Date.now() - retentionPeriod; const filteredMetrics = metricArray.filter((m) => m.timestamp.getTime() > cutoff); this.metrics.set(key, filteredMetrics); // Persist to disk for longer-term storage await this.persistMetric(fullMetric); this.emit('metric:recorded', fullMetric); // Check for anomalies and generate insights await this.checkForAnomalies(key, fullMetric); } async queryMetrics(query: { metrics: string[]; timeRange: { start: Date; end: Date }; aggregation?: 'sum' | 'avg' | 'min' | 'max' | 'count' | 'p95' | 'p99'; groupBy?: string[]; filters?: Record<string, any>; }): Promise<Record<string, any[]>> { const results: Record<string, any[]> = {}; for (const metricName of query.metrics) { const key = metricName.includes('-') ? metricName : `*-${metricName}`; const matchingKeys = Array.from(this.metrics.keys()).filter( (k) => key === '*' || k.includes(key.replace('*-', '')) || k === key, ); let allMetrics: AnalyticsMetric[] = []; for (const k of matchingKeys) { const keyMetrics = this.metrics.get(k) || []; allMetrics.push(...keyMetrics); } // Filter by time range allMetrics = allMetrics.filter( (m) => m.timestamp >= query.timeRange.start && m.timestamp <= query.timeRange.end, ); // Apply filters if (query.filters) { for (const [field, value] of Object.entries(query.filters)) { allMetrics = allMetrics.filter((m) => { if (field === 'tags') { return Object.entries(value as Record<string, string>).every( ([k, v]) => m.tags[k] === v, ); } return (m as any)[field] === value; }); } } // Group by if specified if (query.groupBy && query.groupBy.length > 0) { const grouped = this.groupMetrics(allMetrics, query.groupBy); for (const [group, metrics] of Object.entries(grouped)) { const aggregated = this.aggregateMetrics(metrics, query.aggregation || 'avg'); results[`${metricName}-${group}`] = aggregated; } } else { const aggregated = this.aggregateMetrics(allMetrics, query.aggregation || 'avg'); results[metricName] = aggregated; } } return results; } async createDashboard(dashboardData: { name: string; description: string; type: AnalyticsDashboard['type']; widgets: Omit<DashboardWidget, 'id'>[]; permissions?: Partial<AnalyticsDashboard['permissions']>; }): Promise<AnalyticsDashboard> { const dashboard: AnalyticsDashboard = { id: `dashboard-${Date.now()}-${Math.random().toString(36).substr(2, 9)}`, name: dashboardData.name, description: dashboardData.description, type: dashboardData.type, widgets: dashboardData.widgets.map((widget, index) => ({ id: `widget-${Date.now()}-${index}`, ...widget, })), layout: { columns: 12, rows: 8, grid: true, responsive: true, }, permissions: { viewers: [], editors: [], public: false, ...dashboardData.permissions, }, schedule: { autoRefresh: true, refreshInterval: 30, }, filters: [], createdAt: new Date(), updatedAt: new Date(), createdBy: 'system', }; this.dashboards.set(dashboard.id, dashboard); await this.saveDashboard(dashboard); this.emit('dashboard:created', dashboard); this.logger.info(`Dashboard created: ${dashboard.name} (${dashboard.id})`); return dashboard; } async generateInsights( scope: { metrics?: string[]; timeRange?: { start: Date; end: Date }; categories?: string[]; } = {}, ): Promise<AnalyticsInsight[]> { const insights: AnalyticsInsight[] = []; // Default time range: last 24 hours const timeRange = scope.timeRange || { start: new Date(Date.now() - 24 * 60 * 60 * 1000), end: new Date(), }; // Anomaly detection const anomalies = await this.detectAnomalies(timeRange, scope.metrics); insights.push(...anomalies); // Trend analysis const trends = await this.analyzeTrends(timeRange, scope.metrics); insights.push(...trends); // Performance insights const performance = await this.analyzePerformance(timeRange); insights.push(...performance); // Usage insights const usage = await this.analyzeUsage(timeRange); insights.push(...usage); // Cost optimization insights const costOptimizations = await this.analyzeCostOptimization(timeRange); insights.push(...costOptimizations); // Store insights for (const insight of insights) { this.insights.set(insight.id, insight); await this.saveInsight(insight); } this.emit('insights:generated', { insights, scope }); this.logger.info(`Generated ${insights.length} insights`); return insights; } async trainPredictiveModel(modelConfig: { name: string; description: string; type: PredictiveModel['type']; algorithm: string; features: string[]; target: string; trainingPeriod: { start: Date; end: Date }; }): Promise<PredictiveModel> { const model: PredictiveModel = { id: `model-${Date.now()}-${Math.random().toString(36).substr(2, 9)}`, name: modelConfig.name, description: modelConfig.description, type: modelConfig.type, algorithm: modelConfig.algorithm, features: modelConfig.features, target: modelConfig.target, accuracy: 0, confidence: 0, trainedAt: new Date(), trainingData: { samples: 0, features: modelConfig.features.length, timeRange: modelConfig.trainingPeriod, }, performance: { precision: 0, recall: 0, f1Score: 0, }, predictions: [], status: 'training', }; try { // Collect training data const trainingData = await this.collectTrainingData(model); // Train the model (simplified implementation) const trained = await this.executeModelTraining(model, trainingData); Object.assign(model, trained); model.status = 'ready'; this.models.set(model.id, model); await this.saveModel(model); this.emit('model:trained', model); this.logger.info( `Predictive model trained: ${model.name} (${model.id}) - Accuracy: ${model.accuracy}%`, ); } catch (error) { model.status = 'error'; this.logger.error(`Model training failed: ${model.name}`, { error }); throw error; } return model; } async makePrediction(modelId: string, input: Record<string, any>): Promise<PredictionResult> { const model = this.models.get(modelId); if (!model) { throw new Error(`Model not found: ${modelId}`); } if (model.status !== 'ready') { throw new Error(`Model is not ready for predictions: ${model.status}`); } // Simple prediction logic (would be replaced with actual ML inference) const prediction = await this.executePrediction(model, input); const result: PredictionResult = { id: `prediction-${Date.now()}-${Math.random().toString(36).substr(2, 9)}`, modelId, input, prediction: prediction.value, confidence: prediction.confidence, timestamp: new Date(), }; model.predictions.push(result); model.lastPrediction = new Date(); await this.saveModel(model); this.emit('prediction:made', { model, result }); this.logger.debug(`Prediction made: ${modelId} - ${JSON.stringify(result.prediction)}`); return result; } async getPerformanceMetrics(timeRange?: { start: Date; end: Date }): Promise<PerformanceMetrics> { const range = timeRange || { start: new Date(Date.now() - 60 * 60 * 1000), // Last hour end: new Date(), }; const systemMetrics = await this.queryMetrics({ metrics: ['cpu-usage', 'memory-usage', 'disk-usage', 'network-io'], timeRange: range, aggregation: 'avg', }); const appMetrics = await this.queryMetrics({ metrics: ['response-time', 'request-rate', 'error-rate', 'uptime'], timeRange: range, aggregation: 'avg', }); const dbMetrics = await this.queryMetrics({ metrics: ['db-connections', 'query-time', 'db-size'], timeRange: range, aggregation: 'avg', }); // Construct performance metrics (simplified) return { system: { cpu: { usage: this.getLatestValue(systemMetrics['cpu-usage']) || 0, cores: 8, // Would be detected from system loadAverage: [1.2, 1.5, 1.8], // Would be collected from system }, memory: { used: this.getLatestValue(systemMetrics['memory-usage']) || 0, free: 4000000000, // Would be calculated total: 8000000000, usage: 50, }, disk: { used: this.getLatestValue(systemMetrics['disk-usage']) || 0, free: 100000000000, total: 500000000000, usage: 20, iops: 1000, }, network: { bytesIn: 1000000, bytesOut: 2000000, packetsIn: 5000, packetsOut: 6000, errors: 5, }, }, application: { responseTime: { avg: this.getLatestValue(appMetrics['response-time']) || 0, p50: 150, p95: 500, p99: 1000, }, throughput: { requestsPerSecond: this.getLatestValue(appMetrics['request-rate']) || 0, transactionsPerSecond: 50, }, errors: { rate: this.getLatestValue(appMetrics['error-rate']) || 0, count: 10, types: { '500': 5, '404': 3, '400': 2 }, }, availability: { uptime: this.getLatestValue(appMetrics['uptime']) || 0, sla: 99.9, incidents: 2, }, }, database: { connections: { active: 25, idle: 75, max: 100, }, queries: { avgExecutionTime: this.getLatestValue(dbMetrics['query-time']) || 0, slowQueries: 5, deadlocks: 0, }, storage: { size: this.getLatestValue(dbMetrics['db-size']) || 0, growth: 1000000, // bytes per day fragmentation: 5, }, }, infrastructure: { containers: { running: 12, stopped: 2, restarts: 3, }, services: { healthy: 15, unhealthy: 1, degraded: 0, }, }, }; } async getUsageMetrics(timeRange?: { start: Date; end: Date }): Promise<UsageMetrics> { const range = timeRange || { start: new Date(Date.now() - 24 * 60 * 60 * 1000), // Last 24 hours end: new Date(), }; const usageData = await this.queryMetrics({ metrics: ['active-users', 'sessions', 'api-calls', 'feature-usage'], timeRange: range, aggregation: 'sum', }); return { users: { total: 10000, active: this.getLatestValue(usageData['active-users']) || 0, new: 50, returning: 1500, churn: 25, }, sessions: { total: this.getLatestValue(usageData['sessions']) || 0, duration: { avg: 15 * 60, // 15 minutes median: 12 * 60, }, bounceRate: 25, pagesPerSession: 4.5, }, features: { adoption: { dashboard: { users: 800, usage: 5000, retention: 85 }, reports: { users: 600, usage: 2000, retention: 70 }, analytics: { users: 400, usage: 1500, retention: 60 }, }, mostUsed: ['dashboard', 'reports', 'search'], leastUsed: ['advanced-filters', 'export', 'integrations'], }, api: { calls: this.getLatestValue(usageData['api-calls']) || 0, uniqueConsumers: 150, avgResponseTime: 250, errorRate: 2.5, rateLimits: { hit: 5, consumed: 75, }, }, content: { created: 100, modified: 250, deleted: 25, views: 5000, }, }; } async getBusinessMetrics(timeRange?: { start: Date; end: Date }): Promise<BusinessMetrics> { // This would integrate with business systems (CRM, billing, etc.) return { revenue: { total: 1000000, recurring: 800000, growth: 15, arpu: 100, ltv: 2400, }, customers: { total: 500, new: 25, retained: 450, churned: 10, satisfaction: 4.2, }, conversion: { leads: 1000, qualified: 400, opportunities: 200, closed: 50, rate: 5, }, support: { tickets: 150, resolved: 140, avgResolutionTime: 4 * 60 * 60, // 4 hours satisfaction: 4.5, }, }; } // Private helper methods private getDefaultConfiguration(): AnalyticsConfiguration { return { collection: { enabled: true, samplingRate: 1.0, batchSize: 1000, flushInterval: 60000, }, storage: { retention: { raw: '7d', aggregated: '90d', summary: '1y', }, compression: true, encryption: false, }, processing: { realTime: true, batchProcessing: true, aggregationIntervals: ['1m', '5m', '1h', '1d'], }, alerts: { enabled: true, channels: ['email', 'slack'], escalation: { levels: 3, intervals: [5, 15, 30], // minutes }, }, privacy: { anonymization: true, gdprCompliant: true, dataMinimization: true, }, integrations: {}, }; } private async loadConfigurations(): Promise<void> { try { // Load dashboards const dashboardFiles = await readdir(join(this.analyticsPath, 'dashboards')); for (const file of dashboardFiles.filter((f) => f.endsWith('.json'))) { const content = await readFile(join(this.analyticsPath, 'dashboards', file), 'utf-8'); const dashboard: AnalyticsDashboard = JSON.parse(content); this.dashboards.set(dashboard.id, dashboard); } // Load insights const insightFiles = await readdir(join(this.analyticsPath, 'insights')); for (const file of insightFiles.filter((f) => f.endsWith('.json'))) { const content = await readFile(join(this.analyticsPath, 'insights', file), 'utf-8'); const insight: AnalyticsInsight = JSON.parse(content); this.insights.set(insight.id, insight); } // Load models const modelFiles = await readdir(join(this.analyticsPath, 'models')); for (const file of modelFiles.filter((f) => f.endsWith('.json'))) { const content = await readFile(join(this.analyticsPath, 'models', file), 'utf-8'); const model: PredictiveModel = JSON.parse(content); this.models.set(model.id, model); } this.logger.info( `Loaded ${this.dashboards.size} dashboards, ${this.insights.size} insights, ${this.models.size} models`, ); } catch (error) { this.logger.warn('Failed to load some analytics configurations', { error }); } } private async initializeDefaultDashboards(): Promise<void> { const defaultDashboards = [ { name: 'System Performance', description: 'Real-time system performance metrics', type: 'operational' as const, widgets: [ { title: 'CPU Usage', type: 'gauge' as const, size: 'medium' as const, position: { x: 0, y: 0, width: 6, height: 3 }, dataSource: { query: 'cpu-usage', metrics: ['cpu-usage'], aggregation: 'avg' as const, timeRange: '1h', groupBy: [], }, visualization: { chartType: 'gauge' as const, options: { max: 100, unit: '%' }, thresholds: { warning: 70, critical: 90 }, }, alerts: { enabled: true, conditions: [] }, }, { title: 'Memory Usage', type: 'gauge' as const, size: 'medium' as const, position: { x: 6, y: 0, width: 6, height: 3 }, dataSource: { query: 'memory-usage', metrics: ['memory-usage'], aggregation: 'avg' as const, timeRange: '1h', groupBy: [], }, visualization: { chartType: 'gauge' as const, options: { max: 100, unit: '%' }, thresholds: { warning: 80, critical: 95 }, }, alerts: { enabled: true, conditions: [] }, }, { title: 'Response Time', type: 'chart' as const, size: 'large' as const, position: { x: 0, y: 3, width: 12, height: 4 }, dataSource: { query: 'response-time', metrics: ['response-time'], aggregation: 'avg' as const, timeRange: '24h', groupBy: ['service'], }, visualization: { chartType: 'line' as const, options: { unit: 'ms' }, }, alerts: { enabled: false, conditions: [] }, }, ], }, { name: 'Business KPIs', description: 'Key business performance indicators', type: 'executive' as const, widgets: [ { title: 'Active Users', type: 'metric' as const, size: 'small' as const, position: { x: 0, y: 0, width: 3, height: 2 }, dataSource: { query: 'active-users', metrics: ['active-users'], aggregation: 'count' as const, timeRange: '24h', groupBy: [], }, visualization: { options: { unit: 'users' }, }, alerts: { enabled: false, conditions: [] }, }, ], }, ]; for (const dashboardData of defaultDashboards) { if (!Array.from(this.dashboards.values()).some((d) => d.name === dashboardData.name)) { await this.createDashboard(dashboardData); } } } private async startMetricsCollection(): Promise<void> { // Start collecting system metrics setInterval(async () => { await this.collectSystemMetrics(); }, 60000); // Every minute // Start collecting application metrics setInterval(async () => { await this.collectApplicationMetrics(); }, 30000); // Every 30 seconds this.logger.info('Started automatic metrics collection'); } private async collectSystemMetrics(): Promise<void> { try { // Mock system metrics collection await this.recordMetric({ name: 'cpu-usage', description: 'CPU usage percentage', type: 'gauge', category: 'performance', unit: 'percent', value: Math.random() * 100, tags: { host: 'localhost', service: 'system' }, source: 'system-monitor', metadata: {}, }); await this.recordMetric({ name: 'memory-usage', description: 'Memory usage percentage', type: 'gauge', category: 'performance', unit: 'percent', value: Math.random() * 100, tags: { host: 'localhost', service: 'system' }, source: 'system-monitor', metadata: {}, }); await this.recordMetric({ name: 'disk-usage', description: 'Disk usage percentage', type: 'gauge', category: 'performance', unit: 'percent', value: Math.random() * 100, tags: { host: 'localhost', service: 'system' }, source: 'system-monitor', metadata: {}, }); } catch (error) { this.logger.error('Failed to collect system metrics', { error }); } } private async collectApplicationMetrics(): Promise<void> { try { // Mock application metrics collection await this.recordMetric({ name: 'response-time', description: 'Average response time', type: 'gauge', category: 'performance', unit: 'milliseconds', value: Math.random() * 1000 + 100, tags: { service: 'api', endpoint: '/users' }, source: 'application', metadata: {}, }); await this.recordMetric({ name: 'request-rate', description: 'Requests per second', type: 'counter', category: 'usage', unit: 'requests/sec', value: Math.random() * 100 + 10, tags: { service: 'api' }, source: 'application', metadata: {}, }); await this.recordMetric({ name: 'error-rate', description: 'Error rate percentage', type: 'gauge', category: 'performance', unit: 'percent', value: Math.random() * 5, tags: { service: 'api' }, source: 'application', metadata: {}, }); } catch (error) { this.logger.error('Failed to collect application metrics', { error }); } } private async persistMetric(metric: AnalyticsMetric): Promise<void> { const date = metric.timestamp.toISOString().split('T')[0]; const filePath = join(this.analyticsPath, 'metrics', `${date}.json`); try { let existingData: AnalyticsMetric[] = []; try { const content = await readFile(filePath, 'utf-8'); existingData = JSON.parse(content); } catch { // File doesn't exist yet } existingData.push(metric); await writeFile(filePath, JSON.stringify(existingData, null, 2)); } catch (error) { this.logger.error('Failed to persist metric', { error, metric: metric.id }); } } private async checkForAnomalies(metricKey: string, metric: AnalyticsMetric): Promise<void> { const historical = this.metrics.get(metricKey) || []; if (historical.length < 10) return; // Need enough data for baseline const recent = historical.slice(-10); const average = recent.reduce((sum, m) => sum + m.value, 0) / recent.length; const stdDev = Math.sqrt( recent.reduce((sum, m) => sum + Math.pow(m.value - average, 2), 0) / recent.length, ); const threshold = 2; // 2 standard deviations const deviation = Math.abs(metric.value - average) / stdDev; if (deviation > threshold) { const insight: AnalyticsInsight = { id: `insight-${Date.now()}-${Math.random().toString(36).substr(2, 9)}`, title: `Anomaly detected in ${metric.name}`, description: `The metric ${metric.name} has deviated significantly from its normal pattern`, type: 'anomaly', category: metric.category, confidence: Math.min(95, deviation * 20), impact: deviation > 3 ? 'high' : 'medium', priority: deviation > 3 ? 'high' : 'medium', data: { metrics: [metric.name], timeRange: { start: recent[0].timestamp, end: metric.timestamp }, values: { current: metric.value, average, stdDev }, baseline: { average, stdDev }, deviation, }, recommendations: [ { action: 'Investigate the cause of the anomaly', effort: 'medium', impact: 'Identify potential issues before they become critical', implementation: [ 'Check recent deployments or configuration changes', 'Review system logs for errors or warnings', 'Monitor related metrics for correlation', ], }, ], status: 'new', createdAt: new Date(), updatedAt: new Date(), }; this.insights.set(insight.id, insight); await this.saveInsight(insight); this.emit('anomaly:detected', { metric, insight, deviation }); this.logger.warn(`Anomaly detected in ${metric.name}`, { current: metric.value, average, deviation, }); } } private async detectAnomalies( timeRange: { start: Date; end: Date }, metrics?: string[], ): Promise<AnalyticsInsight[]> { // Simplified anomaly detection return []; } private async analyzeTrends( timeRange: { start: Date; end: Date }, metrics?: string[], ): Promise<AnalyticsInsight[]> { // Simplified trend analysis return []; } private async analyzePerformance(timeRange: { start: Date; end: Date; }): Promise<AnalyticsInsight[]> { const insights: AnalyticsInsight[] = []; // Check response time trends const responseTimeData = await this.queryMetrics({ metrics: ['response-time'], timeRange, aggregation: 'avg', }); if (responseTimeData['response-time']?.length > 0) { const values = responseTimeData['response-time'].map((d: any) => d.value); const recent = values.slice(-5); const earlier = values.slice(0, -5); if (recent.length > 0 && earlier.length > 0) { const recentAvg = recent.reduce((sum, v) => sum + v, 0) / recent.length; const earlierAvg = earlier.reduce((sum, v) => sum + v, 0) / earlier.length; const change = ((recentAvg - earlierAvg) / earlierAvg) * 100; if (Math.abs(change) > 20) { insights.push({ id: `perf-insight-${Date.now()}`, title: `Response time ${change > 0 ? 'increased' : 'decreased'} by ${Math.abs(change).toFixed(1)}%`, description: `Response time has changed significantly in the recent period`, type: 'trend', category: 'performance', confidence: 80, impact: Math.abs(change) > 50 ? 'high' : 'medium', priority: Math.abs(change) > 50 ? 'high' : 'medium', data: { metrics: ['response-time'], timeRange, values: { recent: recentAvg, earlier: earlierAvg, change }, }, recommendations: change > 0 ? [ { action: 'Investigate performance degradation', effort: 'medium', impact: 'Restore optimal response times', implementation: [ 'Check for increased load or traffic', 'Review recent code deployments', 'Analyze database query performance', 'Monitor resource utilization', ], }, ] : [ { action: 'Document performance improvement', effort: 'low', impact: 'Understand what caused the improvement', implementation: [ 'Identify recent optimizations', 'Document best practices', 'Monitor sustainability', ], }, ], status: 'new', createdAt: new Date(), updatedAt: new Date(), }); } } } return insights; } private async analyzeUsage(timeRange: { start: Date; end: Date }): Promise<AnalyticsInsight[]> { // Simplified usage analysis return []; } private async analyzeCostOptimization(timeRange: { start: Date; end: Date; }): Promise<AnalyticsInsight[]> { // Simplified cost optimization analysis return []; } private async collectTrainingData(model: PredictiveModel): Promise<any[]> { // Collect historical data for training const data = await this.queryMetrics({ metrics: model.features, timeRange: model.trainingData.timeRange, aggregation: 'avg', }); // Transform data for ML training (simplified) return Object.values(data).flat(); } private async executeModelTraining( model: PredictiveModel, data: any[], ): Promise<Partial<PredictiveModel>> { // Simplified model training return { accuracy: 85 + Math.random() * 10, confidence: 80 + Math.random() * 15, performance: { precision: 0.85, recall: 0.82, f1Score: 0.83, }, trainingData: { ...model.trainingData, samples: data.length, }, }; } private async executePrediction( model: PredictiveModel, input: Record<string, any>, ): Promise<{ value: any; confidence: number }> { // Simplified prediction logic const value = Math.random() * 100; const confidence = 70 + Math.random() * 25; return { value, confidence }; } private groupMetrics( metrics: AnalyticsMetric[], groupBy: string[], ): Record<string, AnalyticsMetric[]> { const groups: Record<string, AnalyticsMetric[]> = {}; for (const metric of metrics) { const key = groupBy .map((field) => { if (field === 'tags') { return Object.entries(metric.tags) .map(([k, v]) => `${k}:${v}`) .join(','); } return (metric as any)[field] || 'unknown'; }) .join('-'); if (!groups[key]) { groups[key] = []; } groups[key].push(metric); } return groups; } private aggregateMetrics(metrics: AnalyticsMetric[], aggregation: string): any[] { if (metrics.length === 0) return []; // Group by time buckets for time series aggregation const buckets: Record<string, AnalyticsMetric[]> = {}; for (const metric of metrics) { const bucket = new Date(Math.floor(metric.timestamp.getTime() / 60000) * 60000).toISOString(); if (!buckets[bucket]) { buckets[bucket] = []; } buckets[bucket].push(metric); } return Object.entries(buckets) .map(([timestamp, bucketMetrics]) => { const values = bucketMetrics.map((m) => m.value); let aggregatedValue: number; switch (aggregation) { case 'sum': aggregatedValue = values.reduce((sum, v) => sum + v, 0); break; case 'min': aggregatedValue = Math.min(...values); break; case 'max': aggregatedValue = Math.max(...values); break; case 'count': aggregatedValue = values.length; break; case 'p95': values.sort((a, b) => a - b); aggregatedValue = values[Math.floor(values.length * 0.95)]; break; case 'p99': values.sort((a, b) => a - b); aggregatedValue = values[Math.floor(values.length * 0.99)]; break; case 'avg': default: aggregatedValue = values.reduce((sum, v) => sum + v, 0) / values.length; } return { timestamp: new Date(timestamp), value: aggregatedValue, count: values.length, }; }) .sort((a, b) => a.timestamp.getTime() - b.timestamp.getTime()); } private getLatestValue(dataPoints: any[]): number { if (!dataPoints || dataPoints.length === 0) return 0; return dataPoints[dataPoints.length - 1]?.value || 0; } private async saveDashboard(dashboard: AnalyticsDashboard): Promise<void> { const filePath = join(this.analyticsPath, 'dashboards', `${dashboard.id}.json`); await writeFile(filePath, JSON.stringify(dashboard, null, 2)); } private async saveInsight(insight: AnalyticsInsight): Promise<void> { const filePath = join(this.analyticsPath, 'insights', `${insight.id}.json`); await writeFile(filePath, JSON.stringify(insight, null, 2)); } private async saveModel(model: PredictiveModel): Promise<void> { const filePath = join(this.analyticsPath, 'models', `${model.id}.json`); await writeFile(filePath, JSON.stringify(model, null, 2)); } }