UNPKG

claude-flow-tbowman01

Version:

Enterprise-grade AI agent orchestration with ruv-swarm integration (Alpha Release)

57 lines 3.07 kB
export type ExtendedTaskType = 'data-analysis' | 'performance-analysis' | 'statistical-analysis' | 'visualization' | 'predictive-modeling' | 'anomaly-detection' | 'trend-analysis' | 'business-intelligence' | 'quality-analysis' | 'system-design' | 'architecture-review' | 'api-design' | 'cloud-architecture' | 'microservices-design' | 'security-architecture' | 'scalability-design' | 'database-architecture' | 'code-generation' | 'code-review' | 'refactoring' | 'debugging' | 'api-development' | 'database-design' | 'performance-optimization' | 'task-orchestration' | 'progress-tracking' | 'resource-allocation' | 'workflow-management' | 'team-coordination' | 'status-reporting' | 'fact-check' | 'literature-review' | 'market-analysis' | 'unit-testing' | 'integration-testing' | 'e2e-testing' | 'performance-testing' | 'security-testing' | 'api-testing' | 'test-automation' | 'test-analysis'; /** * Optimized AUTO Strategy Implementation * Uses machine learning-inspired heuristics and intelligent task decomposition */ import { BaseStrategy } from './base.js'; import type { DecompositionResult, AgentAllocation } from './base.js'; import type { SwarmObjective, TaskDefinition, AgentState } from '../types.js'; export declare class AutoStrategy extends BaseStrategy { private mlHeuristics; private decompositionCache; private patternCache; private performanceHistory; constructor(config: any); /** * Enhanced objective decomposition with async processing and intelligent batching */ decomposeObjective(objective: SwarmObjective): Promise<DecompositionResult>; /** * ML-inspired agent selection with performance history consideration */ selectAgentForTask(task: TaskDefinition, availableAgents: AgentState[]): Promise<string | null>; /** * Predictive task scheduling with dynamic agent allocation */ optimizeTaskSchedule(tasks: TaskDefinition[], agents: AgentState[]): Promise<AgentAllocation[]>; private initializeMLHeuristics; private detectPatternsAsync; private analyzeTaskTypesAsync; private estimateComplexityAsync; private generateDynamicPatterns; private generateTasksWithBatching; private generateDevelopmentTasks; private createParallelImplementationTasks; private generateAnalysisTasks; private generateAutoTasks; private createTaskDefinition; private getRequiredTools; private canParallelizeImplementation; private identifyComponents; private determineOptimalTaskStructure; private createOptimalImplementationTasks; private analyzeDependencies; private createTaskBatches; private calculateBatchResources; private calculateOptimizedDuration; private selectOptimalStrategy; private calculateAgentScore; private calculateCapabilityMatch; private agentHasCapability; private getAgentPerformanceScore; private applyMLHeuristics; private updateAgentPerformanceHistory; private createPredictiveSchedule; private allocateAgentsOptimally; } //# sourceMappingURL=auto.d.ts.map