claude-flow-tbowman01
Version:
Enterprise-grade AI agent orchestration with ruv-swarm integration (Alpha Release)
57 lines • 3.07 kB
TypeScript
export type ExtendedTaskType = 'data-analysis' | 'performance-analysis' | 'statistical-analysis' | 'visualization' | 'predictive-modeling' | 'anomaly-detection' | 'trend-analysis' | 'business-intelligence' | 'quality-analysis' | 'system-design' | 'architecture-review' | 'api-design' | 'cloud-architecture' | 'microservices-design' | 'security-architecture' | 'scalability-design' | 'database-architecture' | 'code-generation' | 'code-review' | 'refactoring' | 'debugging' | 'api-development' | 'database-design' | 'performance-optimization' | 'task-orchestration' | 'progress-tracking' | 'resource-allocation' | 'workflow-management' | 'team-coordination' | 'status-reporting' | 'fact-check' | 'literature-review' | 'market-analysis' | 'unit-testing' | 'integration-testing' | 'e2e-testing' | 'performance-testing' | 'security-testing' | 'api-testing' | 'test-automation' | 'test-analysis';
/**
* Optimized AUTO Strategy Implementation
* Uses machine learning-inspired heuristics and intelligent task decomposition
*/
import { BaseStrategy } from './base.js';
import type { DecompositionResult, AgentAllocation } from './base.js';
import type { SwarmObjective, TaskDefinition, AgentState } from '../types.js';
export declare class AutoStrategy extends BaseStrategy {
private mlHeuristics;
private decompositionCache;
private patternCache;
private performanceHistory;
constructor(config: any);
/**
* Enhanced objective decomposition with async processing and intelligent batching
*/
decomposeObjective(objective: SwarmObjective): Promise<DecompositionResult>;
/**
* ML-inspired agent selection with performance history consideration
*/
selectAgentForTask(task: TaskDefinition, availableAgents: AgentState[]): Promise<string | null>;
/**
* Predictive task scheduling with dynamic agent allocation
*/
optimizeTaskSchedule(tasks: TaskDefinition[], agents: AgentState[]): Promise<AgentAllocation[]>;
private initializeMLHeuristics;
private detectPatternsAsync;
private analyzeTaskTypesAsync;
private estimateComplexityAsync;
private generateDynamicPatterns;
private generateTasksWithBatching;
private generateDevelopmentTasks;
private createParallelImplementationTasks;
private generateAnalysisTasks;
private generateAutoTasks;
private createTaskDefinition;
private getRequiredTools;
private canParallelizeImplementation;
private identifyComponents;
private determineOptimalTaskStructure;
private createOptimalImplementationTasks;
private analyzeDependencies;
private createTaskBatches;
private calculateBatchResources;
private calculateOptimizedDuration;
private selectOptimalStrategy;
private calculateAgentScore;
private calculateCapabilityMatch;
private agentHasCapability;
private getAgentPerformanceScore;
private applyMLHeuristics;
private updateAgentPerformanceHistory;
private createPredictiveSchedule;
private allocateAgentsOptimally;
}
//# sourceMappingURL=auto.d.ts.map