UNPKG

claude-flow-tbowman01

Version:

Enterprise-grade AI agent orchestration with ruv-swarm integration (Alpha Release)

698 lines 24.4 kB
/** * Analyst Agent - Specialized in data analysis and performance optimization */ import { BaseAgent } from './base-agent.js'; export class AnalystAgent extends BaseAgent { constructor(id, config, environment, logger, eventBus, memory) { super(id, 'analyst', config, environment, logger, eventBus, memory); } getDefaultCapabilities() { return { codeGeneration: false, codeReview: true, testing: false, documentation: true, research: false, analysis: true, webSearch: false, apiIntegration: true, fileSystem: true, terminalAccess: false, languages: ['python', 'r', 'sql', 'typescript', 'javascript', 'julia', 'scala', 'matlab'], frameworks: [ 'pandas', 'numpy', 'matplotlib', 'seaborn', 'plotly', 'dask', 'spark', 'tensorflow', 'pytorch', 'scikit-learn', 'jupyter', 'tableau', ], domains: [ 'data-analysis', 'statistical-analysis', 'performance-analysis', 'business-intelligence', 'data-visualization', 'predictive-modeling', 'machine-learning', 'data-mining', 'financial-analysis', 'market-research', 'operations-research', 'quality-assurance', ], tools: [ 'data-processor', 'statistical-analyzer', 'chart-generator', 'report-builder', 'dashboard-creator', 'ml-pipeline', 'data-validator', 'performance-profiler', 'anomaly-detector', 'trend-analyzer', ], maxConcurrentTasks: 4, maxMemoryUsage: 2048 * 1024 * 1024, // 2GB maxExecutionTime: 1200000, // 20 minutes reliability: 0.9, speed: 0.8, quality: 0.95, }; } getDefaultConfig() { return { autonomyLevel: 0.75, learningEnabled: true, adaptationEnabled: true, maxTasksPerHour: 15, maxConcurrentTasks: 4, timeoutThreshold: 1200000, reportingInterval: 45000, heartbeatInterval: 12000, permissions: ['file-read', 'file-write', 'data-access', 'database-read', 'api-access'], trustedAgents: [], expertise: { 'data-analysis': 0.95, 'statistical-analysis': 0.92, visualization: 0.88, 'performance-analysis': 0.9, 'predictive-modeling': 0.85, 'business-intelligence': 0.83, }, preferences: { outputFormat: 'detailed', includeCharts: true, statisticalTests: 'comprehensive', confidenceLevel: 0.95, visualStyle: 'professional', }, }; } async executeTask(task) { this.logger.info('Analyst executing task', { agentId: this.id, taskType: task.type, taskId: task.id, }); try { switch (task.type) { case 'data-analysis': return await this.analyzeData(task); case 'performance-analysis': return await this.analyzePerformance(task); case 'statistical-analysis': return await this.performStatisticalAnalysis(task); case 'visualization': return await this.createVisualization(task); case 'predictive-modeling': return await this.buildPredictiveModel(task); case 'anomaly-detection': return await this.detectAnomalies(task); case 'trend-analysis': return await this.analyzeTrends(task); case 'business-intelligence': return await this.generateBusinessIntelligence(task); case 'quality-analysis': return await this.analyzeQuality(task); default: return await this.performGeneralAnalysis(task); } } catch (error) { this.logger.error('Analysis task failed', { agentId: this.id, taskId: task.id, error: error instanceof Error ? error.message : String(error), }); throw error; } } async analyzeData(task) { const dataset = task.context?.dataset; const analysisType = task.context?.type || 'exploratory'; const metrics = task.context?.metrics || ['central_tendency', 'distribution', 'correlation']; const outputFormat = task.context?.format || 'report'; this.logger.info('Analyzing data', { analysisType, metrics, outputFormat, }); const analysis = { dataset: { name: dataset?.name || 'Unknown', size: dataset?.size || 0, columns: dataset?.columns || [], types: dataset?.types || {}, }, analysisType, summary: { rowCount: 0, columnCount: 0, missingValues: 0, duplicateRows: 0, outliers: 0, }, descriptiveStats: {}, correlations: {}, distributions: {}, insights: [], recommendations: [], visualizations: [], confidence: 0, methodology: 'statistical-analysis', timestamp: new Date(), }; // Store analysis progress await this.memory.store(`analysis:${task.id}:progress`, { status: 'analyzing', startTime: new Date(), analysisType, }, { type: 'analysis-progress', tags: ['analysis', this.id, analysisType], partition: 'tasks', }); // Simulate data analysis await this.delay(3000); analysis.summary = { rowCount: 10000, columnCount: 15, missingValues: 125, duplicateRows: 23, outliers: 47, }; analysis.insights = [ 'Strong positive correlation between variables A and B (r=0.85)', 'Variable C shows seasonal patterns with 3-month cycles', 'Data quality is high with only 1.25% missing values', 'Outliers concentrated in Q4 periods, likely due to seasonal effects', ]; analysis.recommendations = [ 'Consider log transformation for skewed variables', 'Implement imputation strategy for missing values', 'Investigate Q4 outliers for business context', 'Add more recent data to improve model accuracy', ]; analysis.confidence = 0.88; // Store final results await this.memory.store(`analysis:${task.id}:results`, analysis, { type: 'analysis-results', tags: ['analysis', 'completed', this.id, analysisType], partition: 'tasks', }); return analysis; } async analyzePerformance(task) { const system = task.context?.system; const metrics = task.context?.metrics || ['response_time', 'throughput', 'error_rate']; const timeframe = task.context?.timeframe || '24h'; const baseline = task.context?.baseline; this.logger.info('Analyzing performance', { system, metrics, timeframe, }); const performance = { system, timeframe, metrics: {}, benchmarks: {}, bottlenecks: [], trends: [], recommendations: [], alertsTriggered: [], slaCompliance: { availability: 0, responseTime: 0, throughput: 0, }, comparison: { baseline: baseline || 'previous_week', improvements: [], regressions: [], }, timestamp: new Date(), anomalies: [], insights: [], visualizations: [], optimizationPotential: 0, projectedImprovement: 0, confidence: 0, }; // Simulate performance analysis await this.delay(2500); performance.metrics = { averageResponseTime: 245, // ms p95ResponseTime: 520, p99ResponseTime: 1200, throughput: 1250, // requests/min errorRate: 0.03, // 3% availability: 99.85, // % }; performance.bottlenecks = [ { component: 'Database queries', impact: 'high', description: 'N+1 query pattern causing 40% performance degradation', recommendation: 'Implement query optimization and caching', }, { component: 'Memory allocation', impact: 'medium', description: 'Large object creation in hot path', recommendation: 'Use object pooling or lazy initialization', }, ]; performance.slaCompliance = { availability: 99.85, responseTime: 92.3, throughput: 103.5, }; return performance; } async performStatisticalAnalysis(task) { const data = task.context?.data; const tests = task.context?.tests || ['normality', 'correlation', 'significance']; const alpha = task.context?.alpha || 0.05; const hypothesis = task.context?.hypothesis; this.logger.info('Performing statistical analysis', { tests, alpha, hypothesis, }); const statistics = { tests: {}, hypothesis: hypothesis || 'no_hypothesis', alpha, results: {}, interpretation: {}, assumptions: { normality: false, independence: false, homogeneity: false, }, powerAnalysis: { power: 0, sampleSize: 0, effectSize: 0, }, conclusions: [], limitations: [], timestamp: new Date(), }; // Simulate statistical analysis await this.delay(2000); statistics.results = { normalityTest: { statistic: 0.923, pValue: 0.041, significant: true, interpretation: 'Data deviates significantly from normal distribution', }, correlationTest: { coefficient: 0.756, pValue: 0.002, significant: true, interpretation: 'Strong positive correlation detected', }, }; statistics.conclusions.push('Null hypothesis rejected at α = 0.05 level', "Effect size is large (Cohen's d = 0.8)", 'Results are statistically and practically significant'); return statistics; } async createVisualization(task) { const data = task.context?.data; const chartType = task.context?.type || 'auto'; const style = task.context?.style || 'professional'; const interactive = task.context?.interactive || false; this.logger.info('Creating visualization', { chartType, style, interactive, }); const visualization = { chartType, style, interactive, charts: [], dashboard: null, insights: [], recommendations: [], exportFormats: ['png', 'svg', 'pdf', 'html'], accessibility: { colorBlind: true, screenReader: true, highContrast: false, }, timestamp: new Date(), }; // Simulate visualization creation await this.delay(1500); visualization.charts.push({ type: 'line', title: 'Trend Analysis Over Time', description: 'Shows temporal patterns in the data', dataPoints: 100, interactive: true, }, { type: 'scatter', title: 'Correlation Matrix', description: 'Displays relationships between variables', dataPoints: 500, interactive: false, }); visualization.insights.push('Clear upward trend visible in Q3-Q4', 'Seasonal patterns repeat every 3 months', 'Strong correlation between variables X and Y'); return visualization; } async buildPredictiveModel(task) { const data = task.context?.data; const target = task.context?.target; const algorithm = task.context?.algorithm || 'auto'; const validation = task.context?.validation || 'k-fold'; this.logger.info('Building predictive model', { target, algorithm, validation, }); const model = { algorithm: algorithm === 'auto' ? 'random_forest' : algorithm, features: [], target: target || 'default_target', performance: { accuracy: 0, precision: 0, recall: 0, f1Score: 0, rmse: 0, mse: 0, }, validation: { method: validation, splits: 5, crossValidation: { folds: 5, avgScore: 0, stdDev: 0, }, }, predictions: [], featureImportance: {}, insights: [], recommendations: [], modelMetadata: { parameters: {}, training: { epochs: 100, convergence: true, finalLoss: 0.15, }, }, confidence: 0, timestamp: new Date(), }; // Simulate model building await this.delay(4000); model.performance = { accuracy: 0.87, precision: 0.85, recall: 0.89, f1Score: 0.87, auc: 0.92, rmse: 2.34, }; model.featureImportance = { feature_1: 0.35, feature_2: 0.28, feature_3: 0.22, feature_4: 0.15, }; return model; } async detectAnomalies(task) { const data = task.context?.data; const method = task.context?.method || 'isolation_forest'; const sensitivity = task.context?.sensitivity || 0.1; const threshold = task.context?.threshold; this.logger.info('Detecting anomalies', { method, sensitivity, }); const anomalies = { method, sensitivity, threshold: threshold || 'auto', detected: [], summary: { total: 0, severity: { low: 0, medium: 0, high: 0, critical: 0, }, }, patterns: [], recommendations: [], falsePositiveRate: 0, confidence: 0, timestamp: new Date(), }; // Simulate anomaly detection await this.delay(2000); anomalies.detected.push({ id: 'anom_001', timestamp: new Date('2024-01-15'), severity: 'high', score: 0.95, description: 'Unusual spike in traffic during off-peak hours', features: ['traffic_volume', 'time_of_day'], }, { id: 'anom_002', timestamp: new Date('2024-01-16'), severity: 'medium', score: 0.72, description: 'Abnormal response time pattern', features: ['response_time', 'request_size'], }); anomalies.summary = { total: 15, severity: { low: 8, medium: 4, high: 2, critical: 1, }, }; anomalies.confidence = 0.83; return anomalies; } async analyzeTrends(task) { const data = task.context?.data; const timeframe = task.context?.timeframe || '3-months'; const granularity = task.context?.granularity || 'daily'; const forecast = task.context?.forecast || false; this.logger.info('Analyzing trends', { timeframe, granularity, forecast, }); const trends = { timeframe, metrics: [], trends: [], correlations: {}, patterns: { seasonal: false, cyclical: false, trending: false, }, forecasts: forecast ? [] : [], insights: [], recommendations: [], confidence: 0, timestamp: new Date(), }; // Simulate trend analysis await this.delay(2500); trends.trends.push({ metric: 'user_engagement', direction: 'increasing', slope: 0.15, significance: 0.92, period: 'Q4-2023', }, { metric: 'conversion_rate', direction: 'stable', slope: 0.02, significance: 0.23, period: 'Q4-2023', }); trends.patterns = { seasonal: true, cyclical: false, trending: true, }; trends.confidence = 0.89; return trends; } async generateBusinessIntelligence(task) { const domain = task.context?.domain || 'general'; const metrics = task.context?.metrics || ['revenue', 'growth', 'efficiency']; const timeframe = task.context?.timeframe || 'quarterly'; const audience = task.context?.audience || 'executive'; this.logger.info('Generating business intelligence', { domain, metrics, timeframe, audience, }); const intelligence = { scope: domain, timeframe, kpis: {}, trends: [], insights: [], recommendations: [], actionItems: [], riskFactors: [], opportunities: [], marketAnalysis: { competitors: [], positioning: '', threats: [], opportunities: [], }, financialProjections: { revenue: [], costs: [], profitability: [], }, confidence: 0, timestamp: new Date(), }; // Simulate business intelligence generation await this.delay(3500); intelligence.kpis = { revenue_growth: 12.5, customer_acquisition_cost: 45.3, lifetime_value: 1250.0, churn_rate: 5.2, market_share: 15.7, }; intelligence.insights = [ 'Customer acquisition costs decreased by 18% due to improved targeting', 'Premium tier adoption increased 35% following feature updates', 'Seasonal patterns show consistent Q4 revenue spikes', ]; intelligence.recommendations = [ 'Increase marketing budget allocation to high-performing channels', 'Develop retention strategies for at-risk customer segments', 'Accelerate premium feature development to capture market demand', ]; intelligence.confidence = 0.91; return intelligence; } async analyzeQuality(task) { const subject = task.context?.subject; const criteria = task.context?.criteria || ['accuracy', 'completeness', 'consistency']; const standards = task.context?.standards || 'industry'; const benchmark = task.context?.benchmark; this.logger.info('Analyzing quality', { subject, criteria, standards, }); const quality = { codeQuality: { complexity: 0, maintainability: 0, testCoverage: 0, technicalDebt: 0, }, issues: [], patterns: [], recommendations: [], visualizations: [], overallScore: 0, confidence: 0, timestamp: new Date(), }; // Simulate quality analysis await this.delay(2000); quality.codeQuality = { complexity: 3.2, maintainability: 0.87, testCoverage: 0.91, technicalDebt: 0.23, }; quality.overallScore = 0.91; quality.issues.push({ category: 'completeness', severity: 'medium', description: 'Missing values in 13% of records', impact: 'Affects downstream analysis accuracy', }); quality.patterns.push('High complexity in authentication module'); quality.recommendations.push('Implement automated testing coverage'); quality.confidence = 0.89; return quality; } async performGeneralAnalysis(task) { this.logger.info('Performing general analysis', { description: task.description, }); // Default to data analysis return await this.analyzeData(task); } async delay(ms) { return new Promise((resolve) => setTimeout(resolve, ms)); } getAgentStatus() { return { ...super.getAgentStatus(), specialization: 'Data Analysis & Performance Optimization', analyticsCapabilities: [ 'Statistical Analysis', 'Data Visualization', 'Performance Analysis', 'Predictive Modeling', 'Anomaly Detection', 'Business Intelligence', ], supportedFormats: ['CSV', 'JSON', 'Parquet', 'SQL', 'Excel'], statisticalMethods: ['Descriptive', 'Inferential', 'Multivariate', 'Time Series'], currentAnalyses: this.getCurrentTasks().length, averageAnalysisTime: '10-20 minutes', lastAnalysisCompleted: this.getLastTaskCompletedTime(), preferredTools: ['Python', 'R', 'SQL', 'Jupyter'], }; } } export const createAnalystAgent = (id, config, environment, logger, eventBus, memory) => { const tempAgent = new AnalystAgent(id, {}, {}, logger, eventBus, memory); const defaultConfig = tempAgent.getDefaultConfig(); const defaultEnv = { runtime: 'deno', version: '1.40.0', workingDirectory: './agents/analyst', tempDirectory: './tmp/analyst', logDirectory: './logs/analyst', apiEndpoints: {}, credentials: {}, availableTools: ['data-processor', 'statistical-analyzer', 'chart-generator', 'report-builder'], toolConfigs: { dataProcessor: { chunkSize: 10000, parallel: true }, chartGenerator: { style: 'professional', dpi: 300 }, reportBuilder: { format: 'pdf', includeCharts: true }, }, }; return new AnalystAgent(id, { ...defaultConfig, ...config }, { ...defaultEnv, ...environment }, logger, eventBus, memory); }; //# sourceMappingURL=analyst.js.map