UNPKG

claude-flow-multilang

Version:

Revolutionary multilingual AI orchestration framework with cultural awareness and DDD architecture

322 lines (272 loc) • 9.74 kB
// SPARC Methodology Implementation // Specification, Pseudocode, Architecture, Refinement, Completion import { SparcSpecification } from './specification.js'; import { SparcPseudocode } from './pseudocode.js'; import { SparcArchitecture } from './architecture.js'; import { SparcRefinement } from './refinement.js'; import { SparcCompletion } from './completion.js'; import { SparcCoordinator } from './coordinator.js'; export class SparcMethodology { constructor(taskDescription, options = {}) { this.taskDescription = taskDescription; this.options = { namespace: options.namespace || 'sparc', swarmEnabled: options.swarmEnabled || false, neuralLearning: options.neuralLearning || false, verbose: options.verbose || false, ...options, }; this.phases = { specification: new SparcSpecification(this.taskDescription, this.options), pseudocode: new SparcPseudocode(this.taskDescription, this.options), architecture: new SparcArchitecture(this.taskDescription, this.options), refinement: new SparcRefinement(this.taskDescription, this.options), completion: new SparcCompletion(this.taskDescription, this.options), }; this.coordinator = new SparcCoordinator(this.phases, this.options); this.currentPhase = 'specification'; this.phaseOrder = ['specification', 'pseudocode', 'architecture', 'refinement', 'completion']; this.artifacts = {}; this.qualityGates = {}; } /** * Execute the complete SPARC methodology */ async execute() { console.log('šŸš€ Starting SPARC Methodology Execution'); console.log(`šŸ“‹ Task: ${this.taskDescription}`); console.log(`šŸ”§ Namespace: ${this.options.namespace}`); console.log(`šŸ Swarm: ${this.options.swarmEnabled ? 'Enabled' : 'Disabled'}`); console.log(); // Initialize swarm if enabled if (this.options.swarmEnabled) { await this.coordinator.initializeSwarm(); } // Execute each phase in order for (const phaseName of this.phaseOrder) { console.log(`\nšŸ“ Phase: ${phaseName.toUpperCase()}`); try { // Pre-phase coordination await this.coordinator.prePhase(phaseName); // Execute phase const phase = this.phases[phaseName]; const result = await phase.execute(); // Store artifacts this.artifacts[phaseName] = result; // Quality gate validation const qualityGate = await this.validateQualityGate(phaseName, result); this.qualityGates[phaseName] = qualityGate; if (!qualityGate.passed) { console.log(`āŒ Quality Gate Failed for ${phaseName}`); console.log(`Reasons: ${qualityGate.reasons.join(', ')}`); // Attempt auto-remediation if (this.options.autoRemediation) { await this.autoRemediate(phaseName, qualityGate); } else { throw new Error(`Quality gate failed for phase: ${phaseName}`); } } // Post-phase coordination await this.coordinator.postPhase(phaseName, result); console.log(`āœ… ${phaseName} completed successfully`); } catch (error) { console.error(`āŒ Error in ${phaseName}: ${error.message}`); // Neural learning from failures if (this.options.neuralLearning) { await this.learnFromFailure(phaseName, error); } throw error; } } // Final coordination and cleanup await this.coordinator.finalize(); console.log('\nšŸŽ‰ SPARC Methodology Execution Complete'); return this.generateSummary(); } /** * Execute a specific phase */ async executePhase(phaseName) { if (!this.phases[phaseName]) { throw new Error(`Unknown phase: ${phaseName}`); } console.log(`šŸ“ Executing Phase: ${phaseName.toUpperCase()}`); const phase = this.phases[phaseName]; const result = await phase.execute(); this.artifacts[phaseName] = result; return result; } /** * Validate quality gate for a phase */ async validateQualityGate(phaseName, result) { const qualityGate = { passed: true, reasons: [], }; switch (phaseName) { case 'specification': if (!result.requirements || result.requirements.length === 0) { qualityGate.passed = false; qualityGate.reasons.push('No requirements defined'); } if (!result.acceptanceCriteria || result.acceptanceCriteria.length === 0) { qualityGate.passed = false; qualityGate.reasons.push('No acceptance criteria defined'); } break; case 'pseudocode': if (!result.flowDiagram) { qualityGate.passed = false; qualityGate.reasons.push('No flow diagram created'); } if (!result.pseudocode || result.pseudocode.length < 10) { qualityGate.passed = false; qualityGate.reasons.push('Insufficient pseudocode detail'); } break; case 'architecture': if (!result.components || result.components.length === 0) { qualityGate.passed = false; qualityGate.reasons.push('No components defined'); } if (!result.designPatterns || result.designPatterns.length === 0) { qualityGate.passed = false; qualityGate.reasons.push('No design patterns specified'); } break; case 'refinement': if (!result.testResults || result.testResults.passed === 0) { qualityGate.passed = false; qualityGate.reasons.push('No passing tests'); } if (result.codeQuality && result.codeQuality.score < 0.8) { qualityGate.passed = false; qualityGate.reasons.push('Code quality below threshold'); } break; case 'completion': if (!result.validated) { qualityGate.passed = false; qualityGate.reasons.push('Final validation failed'); } if (!result.documented) { qualityGate.passed = false; qualityGate.reasons.push('Documentation incomplete'); } break; } return qualityGate; } /** * Auto-remediate quality gate failures */ async autoRemediate(phaseName, qualityGate) { console.log(`šŸ”„ Attempting auto-remediation for ${phaseName}`); // Neural learning can inform remediation strategies if (this.options.neuralLearning) { await this.learnFromFailure( phaseName, new Error(`Quality gate failed: ${qualityGate.reasons.join(', ')}`), ); } // Re-execute the phase with enhanced context const phase = this.phases[phaseName]; phase.setRemediationContext(qualityGate); const result = await phase.execute(); this.artifacts[phaseName] = result; // Re-validate const newQualityGate = await this.validateQualityGate(phaseName, result); this.qualityGates[phaseName] = newQualityGate; if (!newQualityGate.passed) { throw new Error( `Auto-remediation failed for ${phaseName}: ${newQualityGate.reasons.join(', ')}`, ); } console.log(`āœ… Auto-remediation successful for ${phaseName}`); } /** * Neural learning from failures */ async learnFromFailure(phaseName, error) { const learningData = { phase: phaseName, task: this.taskDescription, error: error.message, timestamp: new Date().toISOString(), context: this.artifacts, }; // Store learning data for neural network training if (this.options.neuralLearning) { await this.coordinator.recordLearning(learningData); } } /** * Generate execution summary */ generateSummary() { const summary = { taskDescription: this.taskDescription, executionTime: Date.now() - this.startTime, phases: this.phaseOrder.map((phase) => ({ name: phase, status: this.qualityGates[phase]?.passed ? 'passed' : 'failed', artifacts: this.artifacts[phase], })), qualityGates: this.qualityGates, artifacts: this.artifacts, recommendations: this.generateRecommendations(), }; return summary; } /** * Generate recommendations based on execution */ generateRecommendations() { const recommendations = []; // Analyze quality gate failures for (const [phase, gate] of Object.entries(this.qualityGates)) { if (!gate.passed) { recommendations.push({ type: 'quality_improvement', phase: phase, message: `Improve ${phase} quality: ${gate.reasons.join(', ')}`, }); } } // Analyze artifacts for optimization opportunities if (this.artifacts.architecture && this.artifacts.architecture.components.length > 10) { recommendations.push({ type: 'architecture_optimization', message: 'Consider breaking down architecture into smaller, more manageable components', }); } return recommendations; } /** * Get current phase status */ getPhaseStatus(phaseName) { return { name: phaseName, completed: !!this.artifacts[phaseName], qualityGate: this.qualityGates[phaseName], artifacts: this.artifacts[phaseName], }; } /** * Get overall progress */ getProgress() { const completedPhases = Object.keys(this.artifacts).length; const totalPhases = this.phaseOrder.length; return { completed: completedPhases, total: totalPhases, percentage: (completedPhases / totalPhases) * 100, currentPhase: this.currentPhase, phases: this.phaseOrder.map((phase) => this.getPhaseStatus(phase)), }; } } export default SparcMethodology;