UNPKG

claude-flow-multilang

Version:

Revolutionary multilingual AI orchestration framework with cultural awareness and DDD architecture

297 lines (253 loc) • 10.3 kB
import { printSuccess, printError, printWarning } from '../utils.js'; // Simple ID generator function generateId(prefix = 'id') { return `${prefix}-${Date.now()}-${Math.random().toString(36).substr(2, 9)}`; } export async function automationAction(subArgs, flags) { const subcommand = subArgs[0]; const options = flags; if (options.help || options.h || !subcommand) { showAutomationHelp(); return; } try { switch (subcommand) { case 'auto-agent': await autoAgentCommand(subArgs, flags); break; case 'smart-spawn': await smartSpawnCommand(subArgs, flags); break; case 'workflow-select': await workflowSelectCommand(subArgs, flags); break; default: printError(`Unknown automation command: ${subcommand}`); showAutomationHelp(); } } catch (err) { printError(`Automation command failed: ${err.message}`); } } async function autoAgentCommand(subArgs, flags) { const options = flags; const complexity = options['task-complexity'] || options.complexity || 'medium'; const swarmId = options['swarm-id'] || options.swarmId || generateId('swarm'); console.log(`šŸ¤– Auto-spawning agents based on task complexity...`); console.log(`šŸ“Š Task complexity: ${complexity}`); console.log(`šŸ Swarm ID: ${swarmId}`); // Determine optimal agent configuration based on complexity let agentConfig; switch (complexity.toLowerCase()) { case 'low': case 'simple': agentConfig = { coordinator: 1, developer: 1, total: 2 }; break; case 'medium': case 'moderate': agentConfig = { coordinator: 1, developer: 2, researcher: 1, total: 4 }; break; case 'high': case 'complex': agentConfig = { coordinator: 2, developer: 3, researcher: 2, analyzer: 1, total: 8 }; break; case 'enterprise': case 'massive': agentConfig = { coordinator: 3, developer: 5, researcher: 3, analyzer: 2, tester: 2, total: 15, }; break; default: agentConfig = { coordinator: 1, developer: 2, researcher: 1, total: 4 }; } console.log(`\nšŸŽÆ OPTIMAL AGENT CONFIGURATION:`); Object.entries(agentConfig).forEach(([type, count]) => { if (type !== 'total') { console.log(` šŸ¤– ${type}: ${count} agents`); } }); console.log(` šŸ“Š Total agents: ${agentConfig.total}`); // Simulate auto-spawning await new Promise((resolve) => setTimeout(resolve, 1500)); printSuccess(`āœ… Auto-agent spawning completed`); console.log( `šŸš€ ${agentConfig.total} agents spawned and configured for ${complexity} complexity tasks`, ); console.log(`šŸ’¾ Agent configuration saved to swarm memory: ${swarmId}`); console.log(`šŸ“‹ Agents ready for task assignment`); } async function smartSpawnCommand(subArgs, flags) { const options = flags; const requirement = options.requirement || 'general-development'; const maxAgents = parseInt(options['max-agents'] || options.maxAgents || '10'); console.log(`🧠 Smart spawning agents based on requirements...`); console.log(`šŸ“‹ Requirement: ${requirement}`); console.log(`šŸ”¢ Max agents: ${maxAgents}`); // Analyze requirements and suggest optimal agent mix let recommendedAgents = []; if (requirement.includes('development') || requirement.includes('coding')) { recommendedAgents.push( { type: 'coordinator', count: 1, reason: 'Task orchestration' }, { type: 'coder', count: 3, reason: 'Core development work' }, { type: 'tester', count: 1, reason: 'Quality assurance' }, ); } if (requirement.includes('research') || requirement.includes('analysis')) { recommendedAgents.push( { type: 'researcher', count: 2, reason: 'Information gathering' }, { type: 'analyst', count: 1, reason: 'Data analysis' }, ); } if (requirement.includes('enterprise') || requirement.includes('production')) { recommendedAgents.push( { type: 'coordinator', count: 2, reason: 'Multi-tier coordination' }, { type: 'coder', count: 4, reason: 'Parallel development' }, { type: 'researcher', count: 2, reason: 'Requirements analysis' }, { type: 'analyst', count: 1, reason: 'Performance monitoring' }, { type: 'tester', count: 2, reason: 'Comprehensive testing' }, ); } // Default fallback if (recommendedAgents.length === 0) { recommendedAgents = [ { type: 'coordinator', count: 1, reason: 'General coordination' }, { type: 'coder', count: 2, reason: 'General development' }, { type: 'researcher', count: 1, reason: 'Support research' }, ]; } await new Promise((resolve) => setTimeout(resolve, 1000)); printSuccess(`āœ… Smart spawn analysis completed`); console.log(`\nšŸŽÆ RECOMMENDED AGENT CONFIGURATION:`); let totalRecommended = 0; recommendedAgents.forEach((agent) => { console.log(` šŸ¤– ${agent.type}: ${agent.count} agents - ${agent.reason}`); totalRecommended += agent.count; }); console.log(`\nšŸ“Š SUMMARY:`); console.log(` šŸ“ Total recommended: ${totalRecommended} agents`); console.log(` šŸ”¢ Max allowed: ${maxAgents} agents`); console.log( ` āœ… Configuration: ${totalRecommended <= maxAgents ? 'Within limits' : 'Exceeds limits - scaling down required'}`, ); if (totalRecommended > maxAgents) { printWarning( `āš ļø Recommended configuration exceeds max agents. Consider increasing limit or simplifying requirements.`, ); } } async function workflowSelectCommand(subArgs, flags) { const options = flags; const projectType = options['project-type'] || options.project || 'general'; const priority = options.priority || 'balanced'; console.log(`šŸ”„ Selecting optimal workflow configuration...`); console.log(`šŸ“ Project type: ${projectType}`); console.log(`⚔ Priority: ${priority}`); // Define workflow templates const workflows = { 'web-app': { phases: ['planning', 'design', 'frontend', 'backend', 'testing', 'deployment'], agents: { coordinator: 1, developer: 3, tester: 1, researcher: 1 }, duration: '2-4 weeks', }, api: { phases: ['specification', 'design', 'implementation', 'testing', 'documentation'], agents: { coordinator: 1, developer: 2, tester: 1, researcher: 1 }, duration: '1-2 weeks', }, 'data-analysis': { phases: ['collection', 'cleaning', 'analysis', 'visualization', 'reporting'], agents: { coordinator: 1, researcher: 2, analyzer: 2, developer: 1 }, duration: '1-3 weeks', }, enterprise: { phases: [ 'requirements', 'architecture', 'development', 'integration', 'testing', 'deployment', 'monitoring', ], agents: { coordinator: 2, developer: 5, researcher: 2, analyzer: 1, tester: 2 }, duration: '2-6 months', }, general: { phases: ['planning', 'implementation', 'testing', 'delivery'], agents: { coordinator: 1, developer: 2, researcher: 1 }, duration: '1-2 weeks', }, }; const selectedWorkflow = workflows[projectType] || workflows['general']; await new Promise((resolve) => setTimeout(resolve, 800)); printSuccess(`āœ… Workflow selection completed`); console.log(`\nšŸ”„ SELECTED WORKFLOW: ${projectType.toUpperCase()}`); console.log(`ā±ļø Estimated duration: ${selectedWorkflow.duration}`); console.log(`\nšŸ“‹ WORKFLOW PHASES:`); selectedWorkflow.phases.forEach((phase, index) => { console.log(` ${index + 1}. ${phase.charAt(0).toUpperCase() + phase.slice(1)}`); }); console.log(`\nšŸ¤– RECOMMENDED AGENTS:`); Object.entries(selectedWorkflow.agents).forEach(([type, count]) => { console.log(` • ${type}: ${count} agent${count > 1 ? 's' : ''}`); }); console.log(`\n⚔ PRIORITY OPTIMIZATIONS:`); switch (priority) { case 'speed': console.log(` šŸš€ Speed-optimized: +50% agents, parallel execution`); break; case 'quality': console.log(` šŸŽÆ Quality-focused: +100% testing, code review stages`); break; case 'cost': console.log(` šŸ’° Cost-efficient: Minimal agents, sequential execution`); break; default: console.log(` āš–ļø Balanced approach: Optimal speed/quality/cost ratio`); } console.log(`\nšŸ“„ Workflow template saved for project: ${projectType}`); } function showAutomationHelp() { console.log(` šŸ¤– Automation Commands - Intelligent Agent & Workflow Management USAGE: claude-flow automation <command> [options] COMMANDS: auto-agent Automatically spawn optimal agents based on task complexity smart-spawn Intelligently spawn agents based on specific requirements workflow-select Select and configure optimal workflows for project types AUTO-AGENT OPTIONS: --task-complexity <level> Task complexity level (default: medium) Options: low, medium, high, enterprise --swarm-id <id> Target swarm ID for agent spawning SMART-SPAWN OPTIONS: --requirement <req> Specific requirement description Examples: "web-development", "data-analysis", "enterprise-api" --max-agents <n> Maximum number of agents to spawn (default: 10) WORKFLOW-SELECT OPTIONS: --project-type <type> Project type (default: general) Options: web-app, api, data-analysis, enterprise, general --priority <priority> Optimization priority (default: balanced) Options: speed, quality, cost, balanced EXAMPLES: # Auto-spawn for complex enterprise task claude-flow automation auto-agent --task-complexity enterprise --swarm-id swarm-123 # Smart spawn for web development claude-flow automation smart-spawn --requirement "web-development" --max-agents 8 # Select workflow for API project optimized for speed claude-flow automation workflow-select --project-type api --priority speed # Auto-spawn for simple task claude-flow automation auto-agent --task-complexity low šŸŽÆ Automation benefits: • Optimal resource allocation • Intelligent agent selection • Workflow optimization • Reduced manual configuration • Performance-based scaling `); }