claude-flow-multilang
Version:
Revolutionary multilingual AI orchestration framework with cultural awareness and DDD architecture
931 lines (806 loc) ⢠33.5 kB
JavaScript
/**
* Help text templates for Claude Flow CLI
* Provides clear, actionable command documentation
*/
import { HelpFormatter } from './help-formatter.js';
export const VERSION = '2.0.0-alpha.84';
export const MAIN_HELP = `
š Claude-Flow v${VERSION} - Enterprise-Grade AI Agent Orchestration Platform
šÆ ENTERPRISE FEATURES: Complete ruv-swarm integration with 90+ MCP tools, neural networking, and production-ready infrastructure
š NEW: Claude Code 1.0.51+ full compatibility with enhanced hooks and batch processing
ā” ALPHA 84: Enhanced swarm --claude flag for direct Claude Code CLI integration
USAGE:
npx claude-flow@alpha <command> [options] # Run latest alpha version
npx claude-flow@alpha <command> --help # Get detailed help for any command
npx claude-flow@alpha --help # Show this help
# After local install:
claude-flow <command> [options]
claude-flow <command> --help # Get detailed help for any command
š QUICK START:
# First time setup (creates CLAUDE.md & .claude/commands)
npx claude-flow@alpha init
# š HIVE MIND QUICK START (NEW!):
claude-flow hive-mind wizard # Interactive setup wizard
claude-flow hive-mind spawn "objective" # Create intelligent swarm
claude-flow hive-mind spawn "Build API" --claude # Open Claude Code CLI
# After setup, use without npx:
claude-flow start --ui --swarm # Start with swarm intelligence UI
claude-flow swarm "build REST API" # Deploy multi-agent workflow
claude-flow swarm "create service" --claude # Open Claude Code CLI with swarm
š HIVE MIND COMMANDS (NEW!):
hive-mind wizard šÆ Interactive setup wizard (RECOMMENDED)
hive-mind init Initialize Hive Mind system with SQLite
hive-mind spawn <task> Create intelligent swarm with objective
hive-mind status View active swarms and performance metrics
hive-mind metrics Advanced performance analytics
š CORE COMMANDS:
init Initialize Claude Flow v2.0.0 (creates CLAUDE.md & .claude/commands)
--monitoring enables token usage tracking
start [--ui] [--swarm] Start orchestration system
swarm <objective> Multi-agent swarm coordination
agent <action> Agent management (spawn, list, terminate)
sparc <mode> SPARC development modes (17 available)
memory <action> Persistent memory operations
github <mode> GitHub workflow automation (6 modes)
status System status and health
š SWARM INTELLIGENCE COMMANDS:
training <command> Neural pattern learning & model updates (3 commands)
coordination <command> Swarm & agent orchestration (3 commands)
analysis <command> Performance & token usage analytics (real tracking!)
automation <command> Intelligent agent & workflow management (3 commands)
hooks <command> Lifecycle event management (5 commands)
migrate-hooks Migrate settings.json to Claude Code 1.0.51+ format
monitoring <command> Real-time system monitoring (3 commands)
optimization <command> Performance & topology optimization (3 commands)
š ADDITIONAL COMMANDS:
task <action> Task and workflow management
config <action> System configuration
mcp <action> MCP server management
batch <action> Batch operations
š GET HELP:
npx claude-flow@alpha --help Show this help
npx claude-flow@alpha <command> --help Detailed command help
šÆ RECOMMENDED FOR NEW USERS:
npx claude-flow@alpha hive-mind wizard # Start here! Interactive guided setup
npx claude-flow@alpha init # Initialize Claude Flow
npx claude-flow@alpha help hive-mind # Learn about Hive Mind features
npx claude-flow@alpha swarm "Build API" --claude # Quick start with Claude Code CLI
š Documentation: https://github.com/chatman-media/claude-flow-multilang
š Hive Mind Guide: https://github.com/chatman-media/claude-flow-multilang/tree/main/docs/hive-mind
š ruv-swarm: https://github.com/ruvnet/ruv-FANN/tree/main/ruv-swarm
š¬ Discord Community: https://discord.agentics.org
š Created by rUv with love: https://github.com/ruvnet
`;
export const COMMAND_HELP = {
swarm: `
š§ SWARM COMMAND - Multi-Agent AI Coordination
USAGE:
claude-flow swarm <objective> [options]
DESCRIPTION:
Deploy intelligent multi-agent swarms to accomplish complex objectives.
Agents work in parallel with neural optimization and real-time coordination.
OPTIONS:
--strategy <type> Execution strategy: research, development, analysis,
testing, optimization, maintenance
--mode <type> Coordination mode: centralized, distributed,
hierarchical, mesh, hybrid
--max-agents <n> Maximum number of agents (default: 5)
--parallel Enable parallel execution (2.8-4.4x speed improvement)
--monitor Real-time swarm monitoring
--ui Interactive user interface
--background Run in background with progress tracking
--claude Open Claude Code CLI
--executor Use built-in executor instead of Claude Code
--analysis Enable analysis/read-only mode (no code changes)
--read-only Enable read-only mode (alias for --analysis)
EXAMPLES:
claude-flow swarm "Build a REST API with authentication"
claude-flow swarm "Research cloud architecture patterns" --strategy research
claude-flow swarm "Optimize database queries" --max-agents 3 --parallel
claude-flow swarm "Develop feature X" --strategy development --monitor --ui
claude-flow swarm "Build API" --claude # Open Claude Code CLI
claude-flow swarm "Create service" --executor # Use built-in executor
claude-flow swarm "Analyze codebase for security issues" --analysis
claude-flow swarm "Review architecture patterns" --read-only --strategy research
AGENT TYPES:
researcher Research with web access and data analysis
coder Code development with neural patterns
analyst Performance analysis and optimization
architect System design with enterprise patterns
tester Comprehensive testing with automation
coordinator Multi-agent orchestration
ANALYSIS MODE:
When using --analysis or --read-only flags, the swarm operates in a safe
read-only mode that prevents all code modifications. Perfect for:
⢠Code reviews and security audits
⢠Architecture analysis and documentation
⢠Performance bottleneck identification
⢠Technical debt assessment
⢠Dependency mapping and analysis
⢠"What-if" scenario exploration
In analysis mode, agents can only read files, search codebases, and
generate reports - no Write, Edit, or system-modifying operations.
`,
github: `
š GITHUB COMMAND - Workflow Automation
USAGE:
claude-flow github <mode> <objective> [options]
DESCRIPTION:
Automate GitHub workflows with 6 specialized AI-powered modes.
Each mode handles specific aspects of repository management.
MODES:
init Initialize GitHub-enhanced checkpoint system (NEW!)
gh-coordinator GitHub workflow orchestration and CI/CD
pr-manager Pull request management with reviews
issue-tracker Issue management and project coordination
release-manager Release coordination and deployment
repo-architect Repository structure optimization
sync-coordinator Multi-package synchronization
OPTIONS:
--auto-approve Automatically approve safe changes
--dry-run Preview changes without applying
--verbose Detailed operation logging
--config <file> Custom configuration file
EXAMPLES:
claude-flow github init # Initialize GitHub checkpoint hooks
claude-flow github pr-manager "create feature PR with tests"
claude-flow github gh-coordinator "setup CI/CD pipeline" --auto-approve
claude-flow github release-manager "prepare v2.0.0 release"
claude-flow github repo-architect "optimize monorepo structure"
claude-flow github issue-tracker "analyze and label issues"
claude-flow github sync-coordinator "sync versions across packages"
`,
agent: `
š¤ AGENT COMMAND - AI Agent Management
USAGE:
claude-flow agent <action> [options]
ACTIONS:
spawn <type> Create new AI agent
list List all active agents
terminate <id> Terminate specific agent
info <id> Show agent details
hierarchy Manage agent hierarchies
ecosystem View agent ecosystem
OPTIONS:
--name <name> Custom agent name
--verbose Detailed output
--json JSON output format
AGENT TYPES:
researcher Research and data analysis
coder Code generation and refactoring
analyst Performance and security analysis
architect System design and architecture
tester Test creation and execution
coordinator Task coordination
reviewer Code and design review
optimizer Performance optimization
EXAMPLES:
claude-flow agent spawn researcher --name "DataBot"
claude-flow agent list --verbose
claude-flow agent terminate agent-123
claude-flow agent hierarchy create enterprise
claude-flow agent ecosystem status
`,
memory: `
š¾ MEMORY COMMAND - Persistent Memory Management
USAGE:
claude-flow memory <action> [options]
ACTIONS:
store <key> <value> Store data in memory
get <key> Retrieve stored data
query <search> Search memory contents
list List all stored items
delete <key> Delete specific entry
stats Memory usage statistics
export <file> Export memory to file
import <file> Import memory from file
cleanup Clean old entries
OPTIONS:
--namespace <ns> Use specific namespace
--format <type> Output format (json, table)
--verbose Detailed output
EXAMPLES:
claude-flow memory store architecture "microservices pattern"
claude-flow memory get architecture
claude-flow memory query "API design"
claude-flow memory stats
claude-flow memory export backup.json
claude-flow memory cleanup --older-than 30d
`,
sparc: `
š SPARC COMMAND - Development Mode Operations
USAGE:
claude-flow sparc [mode] [objective]
claude-flow sparc <action>
DESCRIPTION:
SPARC provides 17 specialized development modes for different workflows.
Each mode optimizes AI assistance for specific tasks.
MODES:
architect System architecture and design
code Code generation and implementation
tdd Test-driven development workflow
debug Debugging and troubleshooting
security Security analysis and fixes
refactor Code refactoring and optimization
docs Documentation generation
review Code review and quality checks
data Data modeling and analysis
api API design and implementation
ui UI/UX development
ops DevOps and infrastructure
ml Machine learning workflows
blockchain Blockchain development
mobile Mobile app development
game Game development
iot IoT system development
ACTIONS:
modes List all available modes
info <mode> Show mode details
run <mode> Run specific mode
EXAMPLES:
claude-flow sparc "design authentication system" # Auto-select mode
claude-flow sparc architect "design microservices" # Use architect mode
claude-flow sparc tdd "user registration feature" # TDD workflow
claude-flow sparc modes # List all modes
claude-flow sparc info security # Mode details
`,
init: `
šÆ INIT COMMAND - Initialize Claude Flow Environment
USAGE:
claude-flow init [options]
DESCRIPTION:
Initialize Claude Flow v2.0.0 in your project with full MCP integration.
By default creates standard setup with local Git checkpoints.
TWO INITIALIZATION MODES:
⢠claude-flow init Standard init with local Git checkpoints
⢠claude-flow github init GitHub-enhanced with automatic releases (NEW!)
OPTIONS:
--force Overwrite existing configuration
--dry-run Preview what will be created
--basic Use basic initialization (pre-v2.0.0)
--sparc SPARC enterprise setup with additional features
--minimal Minimal setup without examples
--template <t> Use specific project template
WHAT claude-flow init CREATES (DEFAULT):
š CLAUDE.md AI-readable project instructions & context
š .claude/ Enterprise configuration directory containing:
āāā commands/ Custom commands and automation scripts
āāā settings.json Advanced configuration and hooks
āāā hooks/ Pre/post operation automation
š .roomodes 17 specialized SPARC development modes
CLAUDE.md CONTENTS:
⢠Project overview and objectives
⢠Technology stack and architecture
⢠Development guidelines and patterns
⢠AI-specific instructions for better assistance
⢠Integration with ruv-swarm MCP tools
.claude/commands INCLUDES:
⢠Custom project-specific commands
⢠Automated workflow scripts
⢠Integration hooks for Claude Code
⢠Team collaboration tools
Features enabled:
⢠ruv-swarm integration with 27 MCP tools
⢠Neural network processing with WASM
⢠Multi-agent coordination topologies
⢠Cross-session memory persistence
⢠GitHub workflow automation
⢠Performance monitoring
⢠Enterprise security features
EXAMPLES:
npx claude-flow@alpha init # Standard init with local checkpoints
npx claude-flow@alpha github init # GitHub-enhanced init with releases
claude-flow init --force # Overwrite existing configuration
claude-flow github init --force # Force GitHub mode (overwrite)
claude-flow init --dry-run # Preview what will be created
claude-flow init --monitoring # Initialize with token tracking
claude-flow init --sparc # SPARC enterprise setup
claude-flow init --minimal # Basic setup only
`,
start: `
š START COMMAND - Start Orchestration System
USAGE:
claude-flow start [options]
DESCRIPTION:
Start the Claude Flow orchestration system with optional UI and swarm intelligence.
OPTIONS:
--ui Enable interactive user interface
--swarm Enable swarm intelligence features
--daemon Run as background daemon
--port <port> MCP server port (default: 3000)
--verbose Detailed logging
--config <file> Custom configuration file
EXAMPLES:
claude-flow start # Basic start
claude-flow start --ui --swarm # Full UI with swarm features
claude-flow start --daemon # Background daemon
claude-flow start --port 8080 # Custom MCP port
claude-flow start --config prod.json # Production config
`,
status: `
š STATUS COMMAND - System Status
USAGE:
claude-flow status [options]
DESCRIPTION:
Show comprehensive system status including agents, tasks, and resources.
OPTIONS:
--verbose Detailed system information
--json JSON output format
--watch Live updates
--interval <ms> Update interval (with --watch)
OUTPUT INCLUDES:
⢠Orchestrator status
⢠Active agents and their state
⢠Task queue and progress
⢠Memory usage statistics
⢠MCP server status
⢠System resources
⢠Performance metrics
EXAMPLES:
claude-flow status # Basic status
claude-flow status --verbose # Detailed information
claude-flow status --json # Machine-readable format
claude-flow status --watch # Live monitoring
`,
training: `
š§ TRAINING COMMAND - Neural Pattern Learning & Model Updates
USAGE:
claude-flow training <command> [options]
DESCRIPTION:
Train neural patterns from operations, learn from outcomes, and update agent models
with real ruv-swarm integration for continuous learning and optimization.
COMMANDS:
neural-train Train neural patterns from operations data
pattern-learn Learn from specific operation outcomes
model-update Update agent models with new insights
NEURAL TRAIN OPTIONS:
--data <source> Training data source (default: recent)
Options: recent, historical, custom, swarm-<id>
--model <name> Target model (default: general-predictor)
Options: task-predictor, agent-selector, performance-optimizer
--epochs <n> Training epochs (default: 50)
PATTERN LEARN OPTIONS:
--operation <op> Operation type to learn from
--outcome <result> Operation outcome (success/failure/partial)
MODEL UPDATE OPTIONS:
--agent-type <type> Agent type to update (coordinator, coder, researcher, etc.)
--operation-result <res> Result from operation execution
EXAMPLES:
claude-flow training neural-train --data recent --model task-predictor
claude-flow training pattern-learn --operation "file-creation" --outcome "success"
claude-flow training model-update --agent-type coordinator --operation-result "efficient"
claude-flow training neural-train --data "swarm-123" --epochs 100 --model "coordinator-predictor"
šÆ Neural training improves:
⢠Task selection accuracy
⢠Agent performance prediction
⢠Coordination efficiency
⢠Error prevention patterns
`,
coordination: `
š COORDINATION COMMAND - Swarm & Agent Orchestration
USAGE:
claude-flow coordination <command> [options]
DESCRIPTION:
Initialize swarms, spawn coordinated agents, and orchestrate task execution
across agents with real ruv-swarm MCP integration for optimal performance.
COMMANDS:
swarm-init Initialize swarm coordination infrastructure
agent-spawn Spawn and coordinate new agents
task-orchestrate Orchestrate task execution across agents
SWARM-INIT OPTIONS:
--swarm-id <id> Swarm identifier (auto-generated if not provided)
--topology <type> Coordination topology (default: hierarchical)
Options: hierarchical, mesh, ring, star, hybrid
--max-agents <n> Maximum number of agents (default: 5)
--strategy <strategy> Coordination strategy (default: balanced)
AGENT-SPAWN OPTIONS:
--type <type> Agent type (default: general)
Options: coordinator, coder, developer, researcher, analyst, analyzer,
tester, architect, reviewer, optimizer, general
--name <name> Custom agent name (auto-generated if not provided)
--swarm-id <id> Target swarm for agent coordination
--capabilities <cap> Custom capabilities specification
TASK-ORCHESTRATE OPTIONS:
--task <description> Task description (required)
--swarm-id <id> Target swarm for task execution
--strategy <strategy> Coordination strategy (default: adaptive)
Options: adaptive, parallel, sequential, hierarchical
--share-results Enable result sharing across swarm
EXAMPLES:
claude-flow coordination swarm-init --topology hierarchical --max-agents 8
claude-flow coordination agent-spawn --type developer --name "api-dev" --swarm-id swarm-123
claude-flow coordination task-orchestrate --task "Build REST API" --strategy parallel --share-results
claude-flow coordination swarm-init --topology mesh --max-agents 12
šÆ Coordination enables:
⢠Intelligent task distribution
⢠Agent synchronization
⢠Shared memory coordination
⢠Performance optimization
⢠Fault tolerance
`,
analysis: `
š ANALYSIS COMMAND - Performance & Usage Analytics
USAGE:
claude-flow analysis <command> [options]
DESCRIPTION:
Detect performance bottlenecks, generate comprehensive reports, and analyze
token consumption using real ruv-swarm analytics for system optimization.
COMMANDS:
bottleneck-detect Detect performance bottlenecks in the system
performance-report Generate comprehensive performance reports
token-usage Analyze token consumption and costs
BOTTLENECK DETECT OPTIONS:
--scope <scope> Analysis scope (default: system)
Options: system, swarm, agent, task, memory
--target <target> Specific target to analyze (default: all)
Examples: agent-id, swarm-id, task-type
PERFORMANCE REPORT OPTIONS:
--timeframe <time> Report timeframe (default: 24h)
Options: 1h, 6h, 24h, 7d, 30d
--format <format> Report format (default: summary)
Options: summary, detailed, json, csv
TOKEN USAGE OPTIONS:
--agent <agent> Filter by agent type or ID (default: all)
--breakdown Include detailed breakdown by agent type
--cost-analysis Include cost projections and optimization
EXAMPLES:
claude-flow analysis bottleneck-detect --scope system
claude-flow analysis bottleneck-detect --scope agent --target coordinator-1
claude-flow analysis performance-report --timeframe 7d --format detailed
claude-flow analysis token-usage --breakdown --cost-analysis
claude-flow analysis bottleneck-detect --scope swarm --target swarm-123
šÆ Analysis helps with:
⢠Performance optimization
⢠Cost management
⢠Resource allocation
⢠Bottleneck identification
⢠Trend analysis
`,
automation: `
š¤ AUTOMATION COMMAND - Intelligent Agent & Workflow Management
USAGE:
claude-flow automation <command> [options]
DESCRIPTION:
Automatically spawn optimal agents, intelligently manage workflows, and select
optimal configurations with real ruv-swarm intelligence for maximum efficiency.
COMMANDS:
auto-agent Automatically spawn optimal agents based on task complexity
smart-spawn Intelligently spawn agents based on specific requirements
workflow-select Select and configure optimal workflows for project types
AUTO-AGENT OPTIONS:
--task-complexity <level> Task complexity level (default: medium)
Options: low, medium, high, enterprise
--swarm-id <id> Target swarm ID for agent spawning
SMART-SPAWN OPTIONS:
--requirement <req> Specific requirement description
Examples: "web-development", "data-analysis", "enterprise-api"
--max-agents <n> Maximum number of agents to spawn (default: 10)
WORKFLOW-SELECT OPTIONS:
--project-type <type> Project type (default: general)
Options: web-app, api, data-analysis, enterprise, general
--priority <priority> Optimization priority (default: balanced)
Options: speed, quality, cost, balanced
EXAMPLES:
claude-flow automation auto-agent --task-complexity enterprise --swarm-id swarm-123
claude-flow automation smart-spawn --requirement "web-development" --max-agents 8
claude-flow automation workflow-select --project-type api --priority speed
claude-flow automation auto-agent --task-complexity low
šÆ Automation benefits:
⢠Optimal resource allocation
⢠Intelligent agent selection
⢠Workflow optimization
⢠Reduced manual configuration
⢠Performance-based scaling
`,
hooks: `
š HOOKS COMMAND - Lifecycle Event Management
USAGE:
claude-flow hooks <command> [options]
DESCRIPTION:
Execute lifecycle hooks before and after tasks, edits, and sessions with
real ruv-swarm integration for automated preparation, tracking, and cleanup.
COMMANDS:
pre-task Execute before task begins (preparation & setup)
post-task Execute after task completion (analysis & cleanup)
pre-edit Execute before file modifications (backup & validation)
post-edit Execute after file modifications (tracking & coordination)
session-end Execute at session termination (cleanup & export)
PRE-TASK OPTIONS:
--description <desc> Task description
--task-id <id> Task identifier
--agent-id <id> Executing agent identifier
--auto-spawn-agents Auto-spawn agents for task (default: true)
POST-TASK OPTIONS:
--task-id <id> Task identifier
--analyze-performance Generate performance analysis
--generate-insights Create AI-powered insights
PRE-EDIT OPTIONS:
--file <path> Target file path
--operation <type> Edit operation type (edit, create, delete)
POST-EDIT OPTIONS:
--file <path> Modified file path
--memory-key <key> Coordination memory key for storing edit info
SESSION-END OPTIONS:
--export-metrics Export session performance metrics
--swarm-id <id> Swarm identifier for coordination cleanup
--generate-summary Create comprehensive session summary
EXAMPLES:
claude-flow hooks pre-task --description "Build API" --task-id task-123 --agent-id agent-456
claude-flow hooks post-task --task-id task-123 --analyze-performance --generate-insights
claude-flow hooks pre-edit --file "src/api.js" --operation edit
claude-flow hooks post-edit --file "src/api.js" --memory-key "swarm/123/edits/timestamp"
claude-flow hooks session-end --export-metrics --generate-summary --swarm-id swarm-123
šÆ Hooks enable:
⢠Automated preparation & cleanup
⢠Performance tracking
⢠Coordination synchronization
⢠Error prevention
⢠Insight generation
`,
};
export function getCommandHelp(command) {
// Return legacy format for now - to be updated
return COMMAND_HELP[command] || `Help not available for command: ${command}`;
}
export function getStandardizedCommandHelp(command) {
const commandConfigs = {
agent: {
name: 'claude-flow agent',
description: 'Manage individual agents',
usage: 'claude-flow agent <action> [options]',
commands: [
{ name: 'spawn', description: 'Create a new agent' },
{ name: 'list', description: 'List all active agents' },
{ name: 'info', description: 'Show agent details' },
{ name: 'terminate', description: 'Stop an agent' },
{ name: 'hierarchy', description: 'Manage agent hierarchies' },
{ name: 'ecosystem', description: 'View agent ecosystem' },
],
options: [
{
flags: '--type <type>',
description: 'Agent type',
validValues: [
'coordinator',
'researcher',
'coder',
'analyst',
'architect',
'tester',
'reviewer',
'optimizer',
],
},
{
flags: '--name <name>',
description: 'Agent name',
},
{
flags: '--verbose',
description: 'Detailed output',
},
{
flags: '--json',
description: 'Output in JSON format',
},
{
flags: '--help',
description: 'Show this help message',
},
],
examples: [
'claude-flow agent spawn researcher --name "Research Bot"',
'claude-flow agent list --json',
'claude-flow agent terminate agent-123',
'claude-flow agent info agent-456 --verbose',
],
},
sparc: {
name: 'claude-flow sparc',
description: 'Execute SPARC development modes',
usage: 'claude-flow sparc <mode> [task] [options]',
commands: [
{ name: 'spec', description: 'Specification mode - Requirements analysis' },
{ name: 'architect', description: 'Architecture mode - System design' },
{ name: 'tdd', description: 'Test-driven development mode' },
{ name: 'integration', description: 'Integration mode - Component connection' },
{ name: 'refactor', description: 'Refactoring mode - Code improvement' },
{ name: 'modes', description: 'List all available SPARC modes' },
],
options: [
{
flags: '--file <path>',
description: 'Input/output file path',
},
{
flags: '--format <type>',
description: 'Output format',
validValues: ['markdown', 'json', 'yaml'],
},
{
flags: '--verbose',
description: 'Detailed output',
},
{
flags: '--help',
description: 'Show this help message',
},
],
examples: [
'claude-flow sparc spec "User authentication system"',
'claude-flow sparc tdd "Payment processing module"',
'claude-flow sparc architect "Microservices architecture"',
'claude-flow sparc modes',
],
},
memory: {
name: 'claude-flow memory',
description: 'Manage persistent memory operations',
usage: 'claude-flow memory <action> [key] [value] [options]',
commands: [
{ name: 'store', description: 'Store data in memory' },
{ name: 'query', description: 'Search memory by pattern' },
{ name: 'list', description: 'List memory namespaces' },
{ name: 'export', description: 'Export memory to file' },
{ name: 'import', description: 'Import memory from file' },
{ name: 'clear', description: 'Clear memory namespace' },
],
options: [
{
flags: '--namespace <name>',
description: 'Memory namespace',
defaultValue: 'default',
},
{
flags: '--ttl <seconds>',
description: 'Time to live in seconds',
},
{
flags: '--format <type>',
description: 'Export format',
validValues: ['json', 'yaml'],
},
{
flags: '--help',
description: 'Show this help message',
},
],
examples: [
'claude-flow memory store "api_design" "REST endpoints specification"',
'claude-flow memory query "authentication"',
'claude-flow memory export backup.json',
'claude-flow memory list --namespace project',
],
},
};
const config = commandConfigs[command];
if (!config) {
return HelpFormatter.formatError(
`Unknown command: ${command}`,
'claude-flow',
'claude-flow <command> --help',
);
}
return HelpFormatter.formatHelp(config);
}
export function getMainHelp(plain = false) {
// Return the vibrant, emoji-rich version by default
if (!plain) {
return MAIN_HELP;
}
// Return plain standardized format when requested
const helpInfo = {
name: 'claude-flow',
description: 'Advanced AI agent orchestration system',
usage: `claude-flow <command> [<args>] [options]
claude-flow <command> --help
claude-flow --version`,
commands: [
{
name: 'hive-mind',
description: 'Manage hive mind swarm intelligence',
aliases: ['hm'],
},
{
name: 'init',
description: 'Initialize Claude Flow configuration',
},
{
name: 'start',
description: 'Start orchestration system',
},
{
name: 'swarm',
description: 'Execute multi-agent swarm coordination',
},
{
name: 'agent',
description: 'Manage individual agents',
},
{
name: 'sparc',
description: 'Execute SPARC development modes',
},
{
name: 'memory',
description: 'Manage persistent memory operations',
},
{
name: 'github',
description: 'Automate GitHub workflows',
},
{
name: 'status',
description: 'Show system status and health',
},
{
name: 'config',
description: 'Manage configuration settings',
},
{
name: 'session',
description: 'Manage sessions and state persistence',
},
{
name: 'terminal',
description: 'Terminal pool management',
},
{
name: 'workflow',
description: 'Manage automated workflows',
},
{
name: 'training',
description: 'Neural pattern training',
},
{
name: 'coordination',
description: 'Swarm coordination commands',
},
{
name: 'help',
description: 'Show help information',
},
],
globalOptions: [
{
flags: '--config <path>',
description: 'Configuration file path',
defaultValue: '.claude/config.json',
},
{
flags: '--verbose',
description: 'Enable verbose output',
},
{
flags: '--quiet',
description: 'Suppress non-error output',
},
{
flags: '--json',
description: 'Output in JSON format',
},
{
flags: '--plain',
description: 'Show plain help without emojis',
},
{
flags: '--help',
description: 'Show help information',
},
{
flags: '--version',
description: 'Show version information',
},
],
examples: [
'npx claude-flow@alpha init',
'claude-flow hive-mind wizard',
'claude-flow swarm "Build REST API"',
'claude-flow agent spawn researcher --name "Research Bot"',
'claude-flow status --json',
'claude-flow memory query "API design"',
],
};
return HelpFormatter.formatHelp(helpInfo);
}