UNPKG

claude-flow-multilang

Version:

Revolutionary multilingual AI orchestration framework with cultural awareness and DDD architecture

931 lines (806 loc) • 33.5 kB
/** * Help text templates for Claude Flow CLI * Provides clear, actionable command documentation */ import { HelpFormatter } from './help-formatter.js'; export const VERSION = '2.0.0-alpha.84'; export const MAIN_HELP = ` 🌊 Claude-Flow v${VERSION} - Enterprise-Grade AI Agent Orchestration Platform šŸŽÆ ENTERPRISE FEATURES: Complete ruv-swarm integration with 90+ MCP tools, neural networking, and production-ready infrastructure šŸ NEW: Claude Code 1.0.51+ full compatibility with enhanced hooks and batch processing ⚔ ALPHA 84: Enhanced swarm --claude flag for direct Claude Code CLI integration USAGE: npx claude-flow@alpha <command> [options] # Run latest alpha version npx claude-flow@alpha <command> --help # Get detailed help for any command npx claude-flow@alpha --help # Show this help # After local install: claude-flow <command> [options] claude-flow <command> --help # Get detailed help for any command šŸš€ QUICK START: # First time setup (creates CLAUDE.md & .claude/commands) npx claude-flow@alpha init # šŸ HIVE MIND QUICK START (NEW!): claude-flow hive-mind wizard # Interactive setup wizard claude-flow hive-mind spawn "objective" # Create intelligent swarm claude-flow hive-mind spawn "Build API" --claude # Open Claude Code CLI # After setup, use without npx: claude-flow start --ui --swarm # Start with swarm intelligence UI claude-flow swarm "build REST API" # Deploy multi-agent workflow claude-flow swarm "create service" --claude # Open Claude Code CLI with swarm šŸ HIVE MIND COMMANDS (NEW!): hive-mind wizard šŸŽÆ Interactive setup wizard (RECOMMENDED) hive-mind init Initialize Hive Mind system with SQLite hive-mind spawn <task> Create intelligent swarm with objective hive-mind status View active swarms and performance metrics hive-mind metrics Advanced performance analytics šŸ“‹ CORE COMMANDS: init Initialize Claude Flow v2.0.0 (creates CLAUDE.md & .claude/commands) --monitoring enables token usage tracking start [--ui] [--swarm] Start orchestration system swarm <objective> Multi-agent swarm coordination agent <action> Agent management (spawn, list, terminate) sparc <mode> SPARC development modes (17 available) memory <action> Persistent memory operations github <mode> GitHub workflow automation (6 modes) status System status and health šŸ“‹ SWARM INTELLIGENCE COMMANDS: training <command> Neural pattern learning & model updates (3 commands) coordination <command> Swarm & agent orchestration (3 commands) analysis <command> Performance & token usage analytics (real tracking!) automation <command> Intelligent agent & workflow management (3 commands) hooks <command> Lifecycle event management (5 commands) migrate-hooks Migrate settings.json to Claude Code 1.0.51+ format monitoring <command> Real-time system monitoring (3 commands) optimization <command> Performance & topology optimization (3 commands) šŸ“‹ ADDITIONAL COMMANDS: task <action> Task and workflow management config <action> System configuration mcp <action> MCP server management batch <action> Batch operations šŸ” GET HELP: npx claude-flow@alpha --help Show this help npx claude-flow@alpha <command> --help Detailed command help šŸŽÆ RECOMMENDED FOR NEW USERS: npx claude-flow@alpha hive-mind wizard # Start here! Interactive guided setup npx claude-flow@alpha init # Initialize Claude Flow npx claude-flow@alpha help hive-mind # Learn about Hive Mind features npx claude-flow@alpha swarm "Build API" --claude # Quick start with Claude Code CLI šŸ“š Documentation: https://github.com/chatman-media/claude-flow-multilang šŸ Hive Mind Guide: https://github.com/chatman-media/claude-flow-multilang/tree/main/docs/hive-mind šŸ ruv-swarm: https://github.com/ruvnet/ruv-FANN/tree/main/ruv-swarm šŸ’¬ Discord Community: https://discord.agentics.org šŸ’– Created by rUv with love: https://github.com/ruvnet `; export const COMMAND_HELP = { swarm: ` 🧠 SWARM COMMAND - Multi-Agent AI Coordination USAGE: claude-flow swarm <objective> [options] DESCRIPTION: Deploy intelligent multi-agent swarms to accomplish complex objectives. Agents work in parallel with neural optimization and real-time coordination. OPTIONS: --strategy <type> Execution strategy: research, development, analysis, testing, optimization, maintenance --mode <type> Coordination mode: centralized, distributed, hierarchical, mesh, hybrid --max-agents <n> Maximum number of agents (default: 5) --parallel Enable parallel execution (2.8-4.4x speed improvement) --monitor Real-time swarm monitoring --ui Interactive user interface --background Run in background with progress tracking --claude Open Claude Code CLI --executor Use built-in executor instead of Claude Code --analysis Enable analysis/read-only mode (no code changes) --read-only Enable read-only mode (alias for --analysis) EXAMPLES: claude-flow swarm "Build a REST API with authentication" claude-flow swarm "Research cloud architecture patterns" --strategy research claude-flow swarm "Optimize database queries" --max-agents 3 --parallel claude-flow swarm "Develop feature X" --strategy development --monitor --ui claude-flow swarm "Build API" --claude # Open Claude Code CLI claude-flow swarm "Create service" --executor # Use built-in executor claude-flow swarm "Analyze codebase for security issues" --analysis claude-flow swarm "Review architecture patterns" --read-only --strategy research AGENT TYPES: researcher Research with web access and data analysis coder Code development with neural patterns analyst Performance analysis and optimization architect System design with enterprise patterns tester Comprehensive testing with automation coordinator Multi-agent orchestration ANALYSIS MODE: When using --analysis or --read-only flags, the swarm operates in a safe read-only mode that prevents all code modifications. Perfect for: • Code reviews and security audits • Architecture analysis and documentation • Performance bottleneck identification • Technical debt assessment • Dependency mapping and analysis • "What-if" scenario exploration In analysis mode, agents can only read files, search codebases, and generate reports - no Write, Edit, or system-modifying operations. `, github: ` šŸ™ GITHUB COMMAND - Workflow Automation USAGE: claude-flow github <mode> <objective> [options] DESCRIPTION: Automate GitHub workflows with 6 specialized AI-powered modes. Each mode handles specific aspects of repository management. MODES: init Initialize GitHub-enhanced checkpoint system (NEW!) gh-coordinator GitHub workflow orchestration and CI/CD pr-manager Pull request management with reviews issue-tracker Issue management and project coordination release-manager Release coordination and deployment repo-architect Repository structure optimization sync-coordinator Multi-package synchronization OPTIONS: --auto-approve Automatically approve safe changes --dry-run Preview changes without applying --verbose Detailed operation logging --config <file> Custom configuration file EXAMPLES: claude-flow github init # Initialize GitHub checkpoint hooks claude-flow github pr-manager "create feature PR with tests" claude-flow github gh-coordinator "setup CI/CD pipeline" --auto-approve claude-flow github release-manager "prepare v2.0.0 release" claude-flow github repo-architect "optimize monorepo structure" claude-flow github issue-tracker "analyze and label issues" claude-flow github sync-coordinator "sync versions across packages" `, agent: ` šŸ¤– AGENT COMMAND - AI Agent Management USAGE: claude-flow agent <action> [options] ACTIONS: spawn <type> Create new AI agent list List all active agents terminate <id> Terminate specific agent info <id> Show agent details hierarchy Manage agent hierarchies ecosystem View agent ecosystem OPTIONS: --name <name> Custom agent name --verbose Detailed output --json JSON output format AGENT TYPES: researcher Research and data analysis coder Code generation and refactoring analyst Performance and security analysis architect System design and architecture tester Test creation and execution coordinator Task coordination reviewer Code and design review optimizer Performance optimization EXAMPLES: claude-flow agent spawn researcher --name "DataBot" claude-flow agent list --verbose claude-flow agent terminate agent-123 claude-flow agent hierarchy create enterprise claude-flow agent ecosystem status `, memory: ` šŸ’¾ MEMORY COMMAND - Persistent Memory Management USAGE: claude-flow memory <action> [options] ACTIONS: store <key> <value> Store data in memory get <key> Retrieve stored data query <search> Search memory contents list List all stored items delete <key> Delete specific entry stats Memory usage statistics export <file> Export memory to file import <file> Import memory from file cleanup Clean old entries OPTIONS: --namespace <ns> Use specific namespace --format <type> Output format (json, table) --verbose Detailed output EXAMPLES: claude-flow memory store architecture "microservices pattern" claude-flow memory get architecture claude-flow memory query "API design" claude-flow memory stats claude-flow memory export backup.json claude-flow memory cleanup --older-than 30d `, sparc: ` šŸš€ SPARC COMMAND - Development Mode Operations USAGE: claude-flow sparc [mode] [objective] claude-flow sparc <action> DESCRIPTION: SPARC provides 17 specialized development modes for different workflows. Each mode optimizes AI assistance for specific tasks. MODES: architect System architecture and design code Code generation and implementation tdd Test-driven development workflow debug Debugging and troubleshooting security Security analysis and fixes refactor Code refactoring and optimization docs Documentation generation review Code review and quality checks data Data modeling and analysis api API design and implementation ui UI/UX development ops DevOps and infrastructure ml Machine learning workflows blockchain Blockchain development mobile Mobile app development game Game development iot IoT system development ACTIONS: modes List all available modes info <mode> Show mode details run <mode> Run specific mode EXAMPLES: claude-flow sparc "design authentication system" # Auto-select mode claude-flow sparc architect "design microservices" # Use architect mode claude-flow sparc tdd "user registration feature" # TDD workflow claude-flow sparc modes # List all modes claude-flow sparc info security # Mode details `, init: ` šŸŽÆ INIT COMMAND - Initialize Claude Flow Environment USAGE: claude-flow init [options] DESCRIPTION: Initialize Claude Flow v2.0.0 in your project with full MCP integration. By default creates standard setup with local Git checkpoints. TWO INITIALIZATION MODES: • claude-flow init Standard init with local Git checkpoints • claude-flow github init GitHub-enhanced with automatic releases (NEW!) OPTIONS: --force Overwrite existing configuration --dry-run Preview what will be created --basic Use basic initialization (pre-v2.0.0) --sparc SPARC enterprise setup with additional features --minimal Minimal setup without examples --template <t> Use specific project template WHAT claude-flow init CREATES (DEFAULT): šŸ“„ CLAUDE.md AI-readable project instructions & context šŸ“ .claude/ Enterprise configuration directory containing: └── commands/ Custom commands and automation scripts └── settings.json Advanced configuration and hooks └── hooks/ Pre/post operation automation šŸ“‹ .roomodes 17 specialized SPARC development modes CLAUDE.md CONTENTS: • Project overview and objectives • Technology stack and architecture • Development guidelines and patterns • AI-specific instructions for better assistance • Integration with ruv-swarm MCP tools .claude/commands INCLUDES: • Custom project-specific commands • Automated workflow scripts • Integration hooks for Claude Code • Team collaboration tools Features enabled: • ruv-swarm integration with 27 MCP tools • Neural network processing with WASM • Multi-agent coordination topologies • Cross-session memory persistence • GitHub workflow automation • Performance monitoring • Enterprise security features EXAMPLES: npx claude-flow@alpha init # Standard init with local checkpoints npx claude-flow@alpha github init # GitHub-enhanced init with releases claude-flow init --force # Overwrite existing configuration claude-flow github init --force # Force GitHub mode (overwrite) claude-flow init --dry-run # Preview what will be created claude-flow init --monitoring # Initialize with token tracking claude-flow init --sparc # SPARC enterprise setup claude-flow init --minimal # Basic setup only `, start: ` šŸš€ START COMMAND - Start Orchestration System USAGE: claude-flow start [options] DESCRIPTION: Start the Claude Flow orchestration system with optional UI and swarm intelligence. OPTIONS: --ui Enable interactive user interface --swarm Enable swarm intelligence features --daemon Run as background daemon --port <port> MCP server port (default: 3000) --verbose Detailed logging --config <file> Custom configuration file EXAMPLES: claude-flow start # Basic start claude-flow start --ui --swarm # Full UI with swarm features claude-flow start --daemon # Background daemon claude-flow start --port 8080 # Custom MCP port claude-flow start --config prod.json # Production config `, status: ` šŸ“Š STATUS COMMAND - System Status USAGE: claude-flow status [options] DESCRIPTION: Show comprehensive system status including agents, tasks, and resources. OPTIONS: --verbose Detailed system information --json JSON output format --watch Live updates --interval <ms> Update interval (with --watch) OUTPUT INCLUDES: • Orchestrator status • Active agents and their state • Task queue and progress • Memory usage statistics • MCP server status • System resources • Performance metrics EXAMPLES: claude-flow status # Basic status claude-flow status --verbose # Detailed information claude-flow status --json # Machine-readable format claude-flow status --watch # Live monitoring `, training: ` 🧠 TRAINING COMMAND - Neural Pattern Learning & Model Updates USAGE: claude-flow training <command> [options] DESCRIPTION: Train neural patterns from operations, learn from outcomes, and update agent models with real ruv-swarm integration for continuous learning and optimization. COMMANDS: neural-train Train neural patterns from operations data pattern-learn Learn from specific operation outcomes model-update Update agent models with new insights NEURAL TRAIN OPTIONS: --data <source> Training data source (default: recent) Options: recent, historical, custom, swarm-<id> --model <name> Target model (default: general-predictor) Options: task-predictor, agent-selector, performance-optimizer --epochs <n> Training epochs (default: 50) PATTERN LEARN OPTIONS: --operation <op> Operation type to learn from --outcome <result> Operation outcome (success/failure/partial) MODEL UPDATE OPTIONS: --agent-type <type> Agent type to update (coordinator, coder, researcher, etc.) --operation-result <res> Result from operation execution EXAMPLES: claude-flow training neural-train --data recent --model task-predictor claude-flow training pattern-learn --operation "file-creation" --outcome "success" claude-flow training model-update --agent-type coordinator --operation-result "efficient" claude-flow training neural-train --data "swarm-123" --epochs 100 --model "coordinator-predictor" šŸŽÆ Neural training improves: • Task selection accuracy • Agent performance prediction • Coordination efficiency • Error prevention patterns `, coordination: ` šŸ COORDINATION COMMAND - Swarm & Agent Orchestration USAGE: claude-flow coordination <command> [options] DESCRIPTION: Initialize swarms, spawn coordinated agents, and orchestrate task execution across agents with real ruv-swarm MCP integration for optimal performance. COMMANDS: swarm-init Initialize swarm coordination infrastructure agent-spawn Spawn and coordinate new agents task-orchestrate Orchestrate task execution across agents SWARM-INIT OPTIONS: --swarm-id <id> Swarm identifier (auto-generated if not provided) --topology <type> Coordination topology (default: hierarchical) Options: hierarchical, mesh, ring, star, hybrid --max-agents <n> Maximum number of agents (default: 5) --strategy <strategy> Coordination strategy (default: balanced) AGENT-SPAWN OPTIONS: --type <type> Agent type (default: general) Options: coordinator, coder, developer, researcher, analyst, analyzer, tester, architect, reviewer, optimizer, general --name <name> Custom agent name (auto-generated if not provided) --swarm-id <id> Target swarm for agent coordination --capabilities <cap> Custom capabilities specification TASK-ORCHESTRATE OPTIONS: --task <description> Task description (required) --swarm-id <id> Target swarm for task execution --strategy <strategy> Coordination strategy (default: adaptive) Options: adaptive, parallel, sequential, hierarchical --share-results Enable result sharing across swarm EXAMPLES: claude-flow coordination swarm-init --topology hierarchical --max-agents 8 claude-flow coordination agent-spawn --type developer --name "api-dev" --swarm-id swarm-123 claude-flow coordination task-orchestrate --task "Build REST API" --strategy parallel --share-results claude-flow coordination swarm-init --topology mesh --max-agents 12 šŸŽÆ Coordination enables: • Intelligent task distribution • Agent synchronization • Shared memory coordination • Performance optimization • Fault tolerance `, analysis: ` šŸ“Š ANALYSIS COMMAND - Performance & Usage Analytics USAGE: claude-flow analysis <command> [options] DESCRIPTION: Detect performance bottlenecks, generate comprehensive reports, and analyze token consumption using real ruv-swarm analytics for system optimization. COMMANDS: bottleneck-detect Detect performance bottlenecks in the system performance-report Generate comprehensive performance reports token-usage Analyze token consumption and costs BOTTLENECK DETECT OPTIONS: --scope <scope> Analysis scope (default: system) Options: system, swarm, agent, task, memory --target <target> Specific target to analyze (default: all) Examples: agent-id, swarm-id, task-type PERFORMANCE REPORT OPTIONS: --timeframe <time> Report timeframe (default: 24h) Options: 1h, 6h, 24h, 7d, 30d --format <format> Report format (default: summary) Options: summary, detailed, json, csv TOKEN USAGE OPTIONS: --agent <agent> Filter by agent type or ID (default: all) --breakdown Include detailed breakdown by agent type --cost-analysis Include cost projections and optimization EXAMPLES: claude-flow analysis bottleneck-detect --scope system claude-flow analysis bottleneck-detect --scope agent --target coordinator-1 claude-flow analysis performance-report --timeframe 7d --format detailed claude-flow analysis token-usage --breakdown --cost-analysis claude-flow analysis bottleneck-detect --scope swarm --target swarm-123 šŸŽÆ Analysis helps with: • Performance optimization • Cost management • Resource allocation • Bottleneck identification • Trend analysis `, automation: ` šŸ¤– AUTOMATION COMMAND - Intelligent Agent & Workflow Management USAGE: claude-flow automation <command> [options] DESCRIPTION: Automatically spawn optimal agents, intelligently manage workflows, and select optimal configurations with real ruv-swarm intelligence for maximum efficiency. COMMANDS: auto-agent Automatically spawn optimal agents based on task complexity smart-spawn Intelligently spawn agents based on specific requirements workflow-select Select and configure optimal workflows for project types AUTO-AGENT OPTIONS: --task-complexity <level> Task complexity level (default: medium) Options: low, medium, high, enterprise --swarm-id <id> Target swarm ID for agent spawning SMART-SPAWN OPTIONS: --requirement <req> Specific requirement description Examples: "web-development", "data-analysis", "enterprise-api" --max-agents <n> Maximum number of agents to spawn (default: 10) WORKFLOW-SELECT OPTIONS: --project-type <type> Project type (default: general) Options: web-app, api, data-analysis, enterprise, general --priority <priority> Optimization priority (default: balanced) Options: speed, quality, cost, balanced EXAMPLES: claude-flow automation auto-agent --task-complexity enterprise --swarm-id swarm-123 claude-flow automation smart-spawn --requirement "web-development" --max-agents 8 claude-flow automation workflow-select --project-type api --priority speed claude-flow automation auto-agent --task-complexity low šŸŽÆ Automation benefits: • Optimal resource allocation • Intelligent agent selection • Workflow optimization • Reduced manual configuration • Performance-based scaling `, hooks: ` šŸ”— HOOKS COMMAND - Lifecycle Event Management USAGE: claude-flow hooks <command> [options] DESCRIPTION: Execute lifecycle hooks before and after tasks, edits, and sessions with real ruv-swarm integration for automated preparation, tracking, and cleanup. COMMANDS: pre-task Execute before task begins (preparation & setup) post-task Execute after task completion (analysis & cleanup) pre-edit Execute before file modifications (backup & validation) post-edit Execute after file modifications (tracking & coordination) session-end Execute at session termination (cleanup & export) PRE-TASK OPTIONS: --description <desc> Task description --task-id <id> Task identifier --agent-id <id> Executing agent identifier --auto-spawn-agents Auto-spawn agents for task (default: true) POST-TASK OPTIONS: --task-id <id> Task identifier --analyze-performance Generate performance analysis --generate-insights Create AI-powered insights PRE-EDIT OPTIONS: --file <path> Target file path --operation <type> Edit operation type (edit, create, delete) POST-EDIT OPTIONS: --file <path> Modified file path --memory-key <key> Coordination memory key for storing edit info SESSION-END OPTIONS: --export-metrics Export session performance metrics --swarm-id <id> Swarm identifier for coordination cleanup --generate-summary Create comprehensive session summary EXAMPLES: claude-flow hooks pre-task --description "Build API" --task-id task-123 --agent-id agent-456 claude-flow hooks post-task --task-id task-123 --analyze-performance --generate-insights claude-flow hooks pre-edit --file "src/api.js" --operation edit claude-flow hooks post-edit --file "src/api.js" --memory-key "swarm/123/edits/timestamp" claude-flow hooks session-end --export-metrics --generate-summary --swarm-id swarm-123 šŸŽÆ Hooks enable: • Automated preparation & cleanup • Performance tracking • Coordination synchronization • Error prevention • Insight generation `, }; export function getCommandHelp(command) { // Return legacy format for now - to be updated return COMMAND_HELP[command] || `Help not available for command: ${command}`; } export function getStandardizedCommandHelp(command) { const commandConfigs = { agent: { name: 'claude-flow agent', description: 'Manage individual agents', usage: 'claude-flow agent <action> [options]', commands: [ { name: 'spawn', description: 'Create a new agent' }, { name: 'list', description: 'List all active agents' }, { name: 'info', description: 'Show agent details' }, { name: 'terminate', description: 'Stop an agent' }, { name: 'hierarchy', description: 'Manage agent hierarchies' }, { name: 'ecosystem', description: 'View agent ecosystem' }, ], options: [ { flags: '--type <type>', description: 'Agent type', validValues: [ 'coordinator', 'researcher', 'coder', 'analyst', 'architect', 'tester', 'reviewer', 'optimizer', ], }, { flags: '--name <name>', description: 'Agent name', }, { flags: '--verbose', description: 'Detailed output', }, { flags: '--json', description: 'Output in JSON format', }, { flags: '--help', description: 'Show this help message', }, ], examples: [ 'claude-flow agent spawn researcher --name "Research Bot"', 'claude-flow agent list --json', 'claude-flow agent terminate agent-123', 'claude-flow agent info agent-456 --verbose', ], }, sparc: { name: 'claude-flow sparc', description: 'Execute SPARC development modes', usage: 'claude-flow sparc <mode> [task] [options]', commands: [ { name: 'spec', description: 'Specification mode - Requirements analysis' }, { name: 'architect', description: 'Architecture mode - System design' }, { name: 'tdd', description: 'Test-driven development mode' }, { name: 'integration', description: 'Integration mode - Component connection' }, { name: 'refactor', description: 'Refactoring mode - Code improvement' }, { name: 'modes', description: 'List all available SPARC modes' }, ], options: [ { flags: '--file <path>', description: 'Input/output file path', }, { flags: '--format <type>', description: 'Output format', validValues: ['markdown', 'json', 'yaml'], }, { flags: '--verbose', description: 'Detailed output', }, { flags: '--help', description: 'Show this help message', }, ], examples: [ 'claude-flow sparc spec "User authentication system"', 'claude-flow sparc tdd "Payment processing module"', 'claude-flow sparc architect "Microservices architecture"', 'claude-flow sparc modes', ], }, memory: { name: 'claude-flow memory', description: 'Manage persistent memory operations', usage: 'claude-flow memory <action> [key] [value] [options]', commands: [ { name: 'store', description: 'Store data in memory' }, { name: 'query', description: 'Search memory by pattern' }, { name: 'list', description: 'List memory namespaces' }, { name: 'export', description: 'Export memory to file' }, { name: 'import', description: 'Import memory from file' }, { name: 'clear', description: 'Clear memory namespace' }, ], options: [ { flags: '--namespace <name>', description: 'Memory namespace', defaultValue: 'default', }, { flags: '--ttl <seconds>', description: 'Time to live in seconds', }, { flags: '--format <type>', description: 'Export format', validValues: ['json', 'yaml'], }, { flags: '--help', description: 'Show this help message', }, ], examples: [ 'claude-flow memory store "api_design" "REST endpoints specification"', 'claude-flow memory query "authentication"', 'claude-flow memory export backup.json', 'claude-flow memory list --namespace project', ], }, }; const config = commandConfigs[command]; if (!config) { return HelpFormatter.formatError( `Unknown command: ${command}`, 'claude-flow', 'claude-flow <command> --help', ); } return HelpFormatter.formatHelp(config); } export function getMainHelp(plain = false) { // Return the vibrant, emoji-rich version by default if (!plain) { return MAIN_HELP; } // Return plain standardized format when requested const helpInfo = { name: 'claude-flow', description: 'Advanced AI agent orchestration system', usage: `claude-flow <command> [<args>] [options] claude-flow <command> --help claude-flow --version`, commands: [ { name: 'hive-mind', description: 'Manage hive mind swarm intelligence', aliases: ['hm'], }, { name: 'init', description: 'Initialize Claude Flow configuration', }, { name: 'start', description: 'Start orchestration system', }, { name: 'swarm', description: 'Execute multi-agent swarm coordination', }, { name: 'agent', description: 'Manage individual agents', }, { name: 'sparc', description: 'Execute SPARC development modes', }, { name: 'memory', description: 'Manage persistent memory operations', }, { name: 'github', description: 'Automate GitHub workflows', }, { name: 'status', description: 'Show system status and health', }, { name: 'config', description: 'Manage configuration settings', }, { name: 'session', description: 'Manage sessions and state persistence', }, { name: 'terminal', description: 'Terminal pool management', }, { name: 'workflow', description: 'Manage automated workflows', }, { name: 'training', description: 'Neural pattern training', }, { name: 'coordination', description: 'Swarm coordination commands', }, { name: 'help', description: 'Show help information', }, ], globalOptions: [ { flags: '--config <path>', description: 'Configuration file path', defaultValue: '.claude/config.json', }, { flags: '--verbose', description: 'Enable verbose output', }, { flags: '--quiet', description: 'Suppress non-error output', }, { flags: '--json', description: 'Output in JSON format', }, { flags: '--plain', description: 'Show plain help without emojis', }, { flags: '--help', description: 'Show help information', }, { flags: '--version', description: 'Show version information', }, ], examples: [ 'npx claude-flow@alpha init', 'claude-flow hive-mind wizard', 'claude-flow swarm "Build REST API"', 'claude-flow agent spawn researcher --name "Research Bot"', 'claude-flow status --json', 'claude-flow memory query "API design"', ], }; return HelpFormatter.formatHelp(helpInfo); }