UNPKG

ckeditor5-image-upload-base64

Version:

The development environment of CKEditor 5 – the best browser-based rich text editor.

1,187 lines (1,025 loc) 97.7 kB
/** * @license Copyright (c) 2003-2020, CKSource - Frederico Knabben. All rights reserved. * For licensing, see LICENSE.md or https://ckeditor.com/legal/ckeditor-oss-license */ import InsertOperation from './insertoperation'; import AttributeOperation from './attributeoperation'; import RenameOperation from './renameoperation'; import MarkerOperation from './markeroperation'; import MoveOperation from './moveoperation'; import RootAttributeOperation from './rootattributeoperation'; import MergeOperation from './mergeoperation'; import SplitOperation from './splitoperation'; import NoOperation from './nooperation'; import Range from '../range'; import Position from '../position'; import compareArrays from '@ckeditor/ckeditor5-utils/src/comparearrays'; const transformations = new Map(); /** * @module engine/model/operation/transform */ /** * Sets a transformation function to be be used to transform instances of class `OperationA` by instances of class `OperationB`. * * The `transformationFunction` is passed three parameters: * * * `a` - operation to be transformed, an instance of `OperationA`, * * `b` - operation to be transformed by, an instance of `OperationB`, * * {@link module:engine/model/operation/transform~TransformationContext `context`} - object with additional information about * transformation context. * * The `transformationFunction` should return transformation result, which is an array with one or multiple * {@link module:engine/model/operation/operation~Operation operation} instances. * * @protected * @param {Function} OperationA * @param {Function} OperationB * @param {Function} transformationFunction Function to use for transforming. */ function setTransformation( OperationA, OperationB, transformationFunction ) { let aGroup = transformations.get( OperationA ); if ( !aGroup ) { aGroup = new Map(); transformations.set( OperationA, aGroup ); } aGroup.set( OperationB, transformationFunction ); } /** * Returns a previously set transformation function for transforming an instance of `OperationA` by an instance of `OperationB`. * * If no transformation was set for given pair of operations, {@link module:engine/model/operation/transform~noUpdateTransformation} * is returned. This means that if no transformation was set, the `OperationA` instance will not change when transformed * by the `OperationB` instance. * * @private * @param {Function} OperationA * @param {Function} OperationB * @returns {Function} Function set to transform an instance of `OperationA` by an instance of `OperationB`. */ function getTransformation( OperationA, OperationB ) { const aGroup = transformations.get( OperationA ); if ( aGroup && aGroup.has( OperationB ) ) { return aGroup.get( OperationB ); } return noUpdateTransformation; } /** * A transformation function that only clones operation to transform, without changing it. * * @private * @param {module:engine/model/operation/operation~Operation} a Operation to transform. * @returns {Array.<module:engine/model/operation/operation~Operation>} */ function noUpdateTransformation( a ) { return [ a ]; } /** * Transforms operation `a` by operation `b`. * * @param {module:engine/model/operation/operation~Operation} a Operation to be transformed. * @param {module:engine/model/operation/operation~Operation} b Operation to transform by. * @param {module:engine/model/operation/transform~TransformationContext} context Transformation context for this transformation. * @returns {Array.<module:engine/model/operation/operation~Operation>} Transformation result. */ export function transform( a, b, context = {} ) { const transformationFunction = getTransformation( a.constructor, b.constructor ); /* eslint-disable no-useless-catch */ try { a = a.clone(); return transformationFunction( a, b, context ); } catch ( e ) { // @if CK_DEBUG // console.warn( 'Error during operation transformation!', e.message ); // @if CK_DEBUG // console.warn( 'Transformed operation', a ); // @if CK_DEBUG // console.warn( 'Operation transformed by', b ); // @if CK_DEBUG // console.warn( 'context.aIsStrong', context.aIsStrong ); // @if CK_DEBUG // console.warn( 'context.aWasUndone', context.aWasUndone ); // @if CK_DEBUG // console.warn( 'context.bWasUndone', context.bWasUndone ); // @if CK_DEBUG // console.warn( 'context.abRelation', context.abRelation ); // @if CK_DEBUG // console.warn( 'context.baRelation', context.baRelation ); throw e; } /* eslint-enable no-useless-catch */ } /** * Performs a transformation of two sets of operations - `operationsA` and `operationsB`. The transformation is two-way - * both transformed `operationsA` and transformed `operationsB` are returned. * * Note, that the first operation in each set should base on the same document state ( * {@link module:engine/model/document~Document#version document version}). * * It is assumed that `operationsA` are "more important" during conflict resolution between two operations. * * New copies of both passed arrays and operations inside them are returned. Passed arguments are not altered. * * Base versions of the transformed operations sets are updated accordingly. For example, assume that base versions are `4` * and there are `3` operations in `operationsA` and `5` operations in `operationsB`. Then: * * * transformed `operationsA` will start from base version `9` (`4` base version + `5` operations B), * * transformed `operationsB` will start from base version `7` (`4` base version + `3` operations A). * * If no operation was broken into two during transformation, then both sets will end up with an operation that bases on version `11`: * * * transformed `operationsA` start from `9` and there are `3` of them, so the last will have `baseVersion` equal to `11`, * * transformed `operationsB` start from `7` and there are `5` of them, so the last will have `baseVersion` equal to `11`. * * @param {Array.<module:engine/model/operation/operation~Operation>} operationsA * @param {Array.<module:engine/model/operation/operation~Operation>} operationsB * @param {Object} options Additional transformation options. * @param {module:engine/model/document~Document|null} options.document Document which the operations change. * @param {Boolean} [options.useRelations=false] Whether during transformation relations should be used (used during undo for * better conflict resolution). * @param {Boolean} [options.padWithNoOps=false] Whether additional {@link module:engine/model/operation/nooperation~NoOperation}s * should be added to the transformation results to force the same last base version for both transformed sets (in case * if some operations got broken into multiple operations during transformation). * @returns {Object} Transformation result. * @returns {Array.<module:engine/model/operation/operation~Operation>} return.operationsA Transformed `operationsA`. * @returns {Array.<module:engine/model/operation/operation~Operation>} return.operationsB Transformed `operationsB`. * @returns {Map} return.originalOperations A map that links transformed operations to original operations. The keys are the transformed * operations and the values are the original operations from the input (`operationsA` and `operationsB`). */ export function transformSets( operationsA, operationsB, options ) { // Create new arrays so the originally passed arguments are not changed. // No need to clone operations, they are cloned as they are transformed. operationsA = operationsA.slice(); operationsB = operationsB.slice(); const contextFactory = new ContextFactory( options.document, options.useRelations, options.forceWeakRemove ); contextFactory.setOriginalOperations( operationsA ); contextFactory.setOriginalOperations( operationsB ); const originalOperations = contextFactory.originalOperations; // If one of sets is empty there is simply nothing to transform, so return sets as they are. if ( operationsA.length == 0 || operationsB.length == 0 ) { return { operationsA, operationsB, originalOperations }; } // // Following is a description of transformation process: // // There are `operationsA` and `operationsB` to be transformed, both by both. // // So, suppose we have sets of two operations each: `operationsA` = `[ a1, a2 ]`, `operationsB` = `[ b1, b2 ]`. // // Remember, that we can only transform operations that base on the same context. We assert that `a1` and `b1` base on // the same context and we transform them. Then, we get `a1'` and `b1'`. `a2` bases on a context with `a1` -- `a2` // is an operation that followed `a1`. Similarly, `b2` bases on a context with `b1`. // // However, since `a1'` is a result of transformation by `b1`, `a1'` now also has a context with `b1`. This means that // we can safely transform `a1'` by `b2`. As we finish transforming `a1`, we also transformed all `operationsB`. // All `operationsB` also have context including `a1`. Now, we can properly transform `a2` by those operations. // // The transformation process can be visualized on a transformation diagram ("diamond diagram"): // // [the initial state] // [common for a1 and b1] // // * // / \ // / \ // b1 a1 // / \ // / \ // * * // / \ / \ // / \ / \ // b2 a1' b1' a2 // / \ / \ // / \ / \ // * * * // \ / \ / // \ / \ / // a1'' b2' a2' b1'' // \ / \ / // \ / \ / // * * // \ / // \ / // a2'' b2'' // \ / // \ / // * // // [the final state] // // The final state can be reached from the initial state by applying `a1`, `a2`, `b1''` and `b2''`, as well as by // applying `b1`, `b2`, `a1''`, `a2''`. Note how the operations get to a proper common state before each pair is // transformed. // // Another thing to consider is that an operation during transformation can be broken into multiple operations. // Suppose that `a1` * `b1` = `[ a11', a12' ]` (instead of `a1'` that we considered previously). // // In that case, we leave `a12'` for later and we continue transforming `a11'` until it is transformed by all `operationsB` // (in our case it is just `b2`). At this point, `b1` is transformed by "whole" `a1`, while `b2` is only transformed // by `a11'`. Similarly, `a12'` is only transformed by `b1`. This leads to a conclusion that we need to start transforming `a12'` // from the moment just after it was broken. So, `a12'` is transformed by `b2`. Now, "the whole" `a1` is transformed // by `operationsB`, while all `operationsB` are transformed by "the whole" `a1`. This means that we can continue with // following `operationsA` (in our case it is just `a2`). // // Of course, also `operationsB` can be broken. However, since we focus on transforming operation `a` to the end, // the only thing to do is to store both pieces of operation `b`, so that the next transformed operation `a` will // be transformed by both of them. // // * // / \ // / \ // / \ // b1 a1 // / \ // / \ // / \ // * * // / \ / \ // / a11' / \ // / \ / \ // b2 * b1' a2 // / / \ / \ // / / a12' / \ // / / \ / \ // * b2' * * // \ / / \ / // a11'' / b21'' \ / // \ / / \ / // * * a2' b1'' // \ / \ \ / // a12'' b22''\ \ / // \ / \ \ / // * a2'' * // \ \ / // \ \ b21''' // \ \ / // a2''' * // \ / // \ b22''' // \ / // * // // Note, how `a1` is broken and transformed into `a11'` and `a12'`, while `b2'` got broken and transformed into `b21''` and `b22''`. // // Having all that on mind, here is an outline for the transformation process algorithm: // // 1. We have `operationsA` and `operationsB` array, which we dynamically update as the transformation process goes. // // 2. We take next (or first) operation from `operationsA` and check from which operation `b` we need to start transforming it. // All original `operationsA` are set to be transformed starting from the first operation `b`. // // 3. We take operations from `operationsB`, one by one, starting from the correct one, and transform operation `a` // by operation `b` (and vice versa). We update `operationsA` and `operationsB` by replacing the original operations // with the transformation results. // // 4. If operation is broken into multiple operations, we save all the new operations in the place of the // original operation. // // 5. Additionally, if operation `a` was broken, for the "new" operation, we remember from which operation `b` it should // be transformed by. // // 6. We continue transforming "current" operation `a` until it is transformed by all `operationsB`. Then, go to 2. // unless the last operation `a` was transformed. // // The actual implementation of the above algorithm is slightly different, as only one loop (while) is used. // The difference is that we have "current" `a` operation to transform and we store the index of the next `b` operation // to transform by. Each loop operates on two indexes then: index pointing to currently processed `a` operation and // index pointing to next `b` operation. Each loop is just one `a * b` + `b * a` transformation. After each loop // operation `b` index is updated. If all `b` operations were visited for the current `a` operation, we change // current `a` operation index to the next one. // // For each operation `a`, keeps information what is the index in `operationsB` from which the transformation should start. const nextTransformIndex = new WeakMap(); // For all the original `operationsA`, set that they should be transformed starting from the first of `operationsB`. for ( const op of operationsA ) { nextTransformIndex.set( op, 0 ); } // Additional data that is used for some postprocessing after the main transformation process is done. const data = { nextBaseVersionA: operationsA[ operationsA.length - 1 ].baseVersion + 1, nextBaseVersionB: operationsB[ operationsB.length - 1 ].baseVersion + 1, originalOperationsACount: operationsA.length, originalOperationsBCount: operationsB.length }; // Index of currently transformed operation `a`. let i = 0; // While not all `operationsA` are transformed... while ( i < operationsA.length ) { // Get "current" operation `a`. const opA = operationsA[ i ]; // For the "current" operation `a`, get the index of the next operation `b` to transform by. const indexB = nextTransformIndex.get( opA ); // If operation `a` was already transformed by every operation `b`, change "current" operation `a` to the next one. if ( indexB == operationsB.length ) { i++; continue; } const opB = operationsB[ indexB ]; // Transform `a` by `b` and `b` by `a`. const newOpsA = transform( opA, opB, contextFactory.getContext( opA, opB, true ) ); const newOpsB = transform( opB, opA, contextFactory.getContext( opB, opA, false ) ); // As a result we get one or more `newOpsA` and one or more `newOpsB` operations. // Update contextual information about operations. contextFactory.updateRelation( opA, opB ); contextFactory.setOriginalOperations( newOpsA, opA ); contextFactory.setOriginalOperations( newOpsB, opB ); // For new `a` operations, update their index of the next operation `b` to transform them by. // // This is needed even if there was only one result (`a` was not broken) because that information is used // at the beginning of this loop every time. for ( const newOpA of newOpsA ) { // Acknowledge, that operation `b` also might be broken into multiple operations. // // This is why we raise `indexB` not just by 1. If `newOpsB` are multiple operations, they will be // spliced in the place of `opB`. So we need to change `transformBy` accordingly, so that an operation won't // be transformed by the same operation (part of it) again. nextTransformIndex.set( newOpA, indexB + newOpsB.length ); } // Update `operationsA` and `operationsB` with the transformed versions. operationsA.splice( i, 1, ...newOpsA ); operationsB.splice( indexB, 1, ...newOpsB ); } if ( options.padWithNoOps ) { // If no-operations padding is enabled, count how many extra `a` and `b` operations were generated. const brokenOperationsACount = operationsA.length - data.originalOperationsACount; const brokenOperationsBCount = operationsB.length - data.originalOperationsBCount; // Then, if that number is not the same, pad `operationsA` or `operationsB` with correct number of no-ops so // that the base versions are equalled. // // Note that only one array will be updated, as only one of those subtractions can be greater than zero. padWithNoOps( operationsA, brokenOperationsBCount - brokenOperationsACount ); padWithNoOps( operationsB, brokenOperationsACount - brokenOperationsBCount ); } // Finally, update base versions of transformed operations. updateBaseVersions( operationsA, data.nextBaseVersionB ); updateBaseVersions( operationsB, data.nextBaseVersionA ); return { operationsA, operationsB, originalOperations }; } // Gathers additional data about operations processed during transformation. Can be used to obtain contextual information // about two operations that are about to be transformed. This contextual information can be used for better conflict resolution. class ContextFactory { // Creates `ContextFactory` instance. // // @param {module:engine/model/document~Document} document Document which the operations change. // @param {Boolean} useRelations Whether during transformation relations should be used (used during undo for // better conflict resolution). // @param {Boolean} [forceWeakRemove=false] If set to `false`, remove operation will be always stronger than move operation, // so the removed nodes won't end up back in the document root. When set to `true`, context data will be used. constructor( document, useRelations, forceWeakRemove = false ) { // For each operation that is created during transformation process, we keep a reference to the original operation // which it comes from. The original operation works as a kind of "identifier". Every contextual information // gathered during transformation that we want to save for given operation, is actually saved for the original operation. // This way no matter if operation `a` is cloned, then transformed, even breaks, we still have access to the previously // gathered data through original operation reference. this.originalOperations = new Map(); // `model.History` instance which information about undone operations will be taken from. this._history = document.history; // Whether additional context should be used. this._useRelations = useRelations; this._forceWeakRemove = !!forceWeakRemove; // Relations is a double-map structure (maps in map) where for two operations we store how those operations were related // to each other. Those relations are evaluated during transformation process. For every transformated pair of operations // we keep relations between them. this._relations = new Map(); } // Sets "original operation" for given operations. // // During transformation process, operations are cloned, then changed, then processed again, sometimes broken into two // or multiple operations. When gathering additional data it is important that all operations can be somehow linked // so a cloned and transformed "version" still kept track of the data assigned earlier to it. // // The original operation object will be used as such an universal linking id. Throughout the transformation process // all cloned operations will refer to "the original operation" when storing and reading additional data. // // If `takeFrom` is not set, each operation from `operations` array will be assigned itself as "the original operation". // This should be used as an initialization step. // // If `takeFrom` is set, each operation from `operations` will be assigned the same original operation as assigned // for `takeFrom` operation. This should be used to update original operations. It should be used in a way that // `operations` are the result of `takeFrom` transformation to ensure proper "original operation propagation". // // @param {Array.<module:engine/model/operation/operation~Operation>} operations // @param {module:engine/model/operation/operation~Operation|null} [takeFrom=null] setOriginalOperations( operations, takeFrom = null ) { const originalOperation = takeFrom ? this.originalOperations.get( takeFrom ) : null; for ( const operation of operations ) { this.originalOperations.set( operation, originalOperation || operation ); } } // Saves a relation between operations `opA` and `opB`. // // Relations are then later used to help solve conflicts when operations are transformed. // // @param {module:engine/model/operation/operation~Operation} opA // @param {module:engine/model/operation/operation~Operation} opB updateRelation( opA, opB ) { // The use of relations is described in a bigger detail in transformation functions. // // In brief, this function, for specified pairs of operation types, checks how positions defined in those operations relate. // Then those relations are saved. For example, for two move operations, it is saved if one of those operations target // position is before the other operation source position. This kind of information gives contextual information when // transformation is used during undo. Similar checks are done for other pairs of operations. // switch ( opA.constructor ) { case MoveOperation: { switch ( opB.constructor ) { case MergeOperation: { if ( opA.targetPosition.isEqual( opB.sourcePosition ) || opB.movedRange.containsPosition( opA.targetPosition ) ) { this._setRelation( opA, opB, 'insertAtSource' ); } else if ( opA.targetPosition.isEqual( opB.deletionPosition ) ) { this._setRelation( opA, opB, 'insertBetween' ); } else if ( opA.targetPosition.isAfter( opB.sourcePosition ) ) { this._setRelation( opA, opB, 'moveTargetAfter' ); } break; } case MoveOperation: { if ( opA.targetPosition.isEqual( opB.sourcePosition ) || opA.targetPosition.isBefore( opB.sourcePosition ) ) { this._setRelation( opA, opB, 'insertBefore' ); } else { this._setRelation( opA, opB, 'insertAfter' ); } break; } } break; } case SplitOperation: { switch ( opB.constructor ) { case MergeOperation: { if ( opA.splitPosition.isBefore( opB.sourcePosition ) ) { this._setRelation( opA, opB, 'splitBefore' ); } break; } case MoveOperation: { if ( opA.splitPosition.isEqual( opB.sourcePosition ) || opA.splitPosition.isBefore( opB.sourcePosition ) ) { this._setRelation( opA, opB, 'splitBefore' ); } break; } } break; } case MergeOperation: { switch ( opB.constructor ) { case MergeOperation: { if ( !opA.targetPosition.isEqual( opB.sourcePosition ) ) { this._setRelation( opA, opB, 'mergeTargetNotMoved' ); } if ( opA.sourcePosition.isEqual( opB.targetPosition ) ) { this._setRelation( opA, opB, 'mergeSourceNotMoved' ); } if ( opA.sourcePosition.isEqual( opB.sourcePosition ) ) { this._setRelation( opA, opB, 'mergeSameElement' ); } break; } case SplitOperation: { if ( opA.sourcePosition.isEqual( opB.splitPosition ) ) { this._setRelation( opA, opB, 'splitAtSource' ); } } } break; } case MarkerOperation: { const markerRange = opA.newRange; if ( !markerRange ) { return; } switch ( opB.constructor ) { case MoveOperation: { const movedRange = Range._createFromPositionAndShift( opB.sourcePosition, opB.howMany ); const affectedLeft = movedRange.containsPosition( markerRange.start ) || movedRange.start.isEqual( markerRange.start ); const affectedRight = movedRange.containsPosition( markerRange.end ) || movedRange.end.isEqual( markerRange.end ); if ( ( affectedLeft || affectedRight ) && !movedRange.containsRange( markerRange ) ) { this._setRelation( opA, opB, { side: affectedLeft ? 'left' : 'right', path: affectedLeft ? markerRange.start.path.slice() : markerRange.end.path.slice() } ); } break; } case MergeOperation: { const wasInLeftElement = markerRange.start.isEqual( opB.targetPosition ); const wasStartBeforeMergedElement = markerRange.start.isEqual( opB.deletionPosition ); const wasEndBeforeMergedElement = markerRange.end.isEqual( opB.deletionPosition ); const wasInRightElement = markerRange.end.isEqual( opB.sourcePosition ); if ( wasInLeftElement || wasStartBeforeMergedElement || wasEndBeforeMergedElement || wasInRightElement ) { this._setRelation( opA, opB, { wasInLeftElement, wasStartBeforeMergedElement, wasEndBeforeMergedElement, wasInRightElement } ); } break; } } break; } } } // Evaluates and returns contextual information about two given operations `opA` and `opB` which are about to be transformed. // // @param {module:engine/model/operation/operation~Operation} opA // @param {module:engine/model/operation/operation~Operation} opB // @returns {module:engine/model/operation/transform~TransformationContext} getContext( opA, opB, aIsStrong ) { return { aIsStrong, aWasUndone: this._wasUndone( opA ), bWasUndone: this._wasUndone( opB ), abRelation: this._useRelations ? this._getRelation( opA, opB ) : null, baRelation: this._useRelations ? this._getRelation( opB, opA ) : null, forceWeakRemove: this._forceWeakRemove }; } // Returns whether given operation `op` has already been undone. // // Information whether an operation was undone gives more context when making a decision when two operations are in conflict. // // @param {module:engine/model/operation/operation~Operation} op // @returns {Boolean} _wasUndone( op ) { // For `op`, get its original operation. After all, if `op` is a clone (or even transformed clone) of another // operation, literally `op` couldn't be undone. It was just generated. If anything, it was the operation it origins // from which was undone. So get that original operation. const originalOp = this.originalOperations.get( op ); // And check with the document if the original operation was undone. return originalOp.wasUndone || this._history.isUndoneOperation( originalOp ); } // Returns a relation between `opA` and an operation which is undone by `opB`. This can be `String` value if a relation // was set earlier or `null` if there was no relation between those operations. // // This is a little tricky to understand, so let's compare it to `ContextFactory#_wasUndone`. // // When `wasUndone( opB )` is used, we check if the `opB` has already been undone. It is obvious, that the // undoing operation must happen after the undone operation. So, essentially, we have `opB`, we take document history, // we look forward in the future and ask if in that future `opB` was undone. // // Relations is a backward process to `wasUndone()`. // // Long story short - using relations is asking what happened in the past. Looking back. This time we have an undoing // operation `opB` which has undone some other operation. When there is a transformation `opA` x `opB` and there is // a conflict to solve and `opB` is an undoing operation, we can look back in the history and see what was a relation // between `opA` and the operation which `opB` undone. Basing on that relation from the past, we can now make // a better decision when resolving a conflict between two operations, because we know more about the context of // those two operations. // // This is why this function does not return a relation directly between `opA` and `opB` because we need to look // back to search for a meaningful contextual information. // // @param {module:engine/model/operation/operation~Operation} opA // @param {module:engine/model/operation/operation~Operation} opB // @returns {String|null} _getRelation( opA, opB ) { // Get the original operation. Similarly as in `wasUndone()` it is used as an universal identifier for stored data. const origB = this.originalOperations.get( opB ); const undoneB = this._history.getUndoneOperation( origB ); // If `opB` is not undoing any operation, there is no relation. if ( !undoneB ) { return null; } const origA = this.originalOperations.get( opA ); const relationsA = this._relations.get( origA ); // Get all relations for `opA`, and check if there is a relation with `opB`-undone-counterpart. If so, return it. if ( relationsA ) { return relationsA.get( undoneB ) || null; } return null; } // Helper function for `ContextFactory#updateRelations`. // // @private // @param {module:engine/model/operation/operation~Operation} opA // @param {module:engine/model/operation/operation~Operation} opB // @param {String} relation _setRelation( opA, opB, relation ) { // As always, setting is for original operations, not the clones/transformed operations. const origA = this.originalOperations.get( opA ); const origB = this.originalOperations.get( opB ); let relationsA = this._relations.get( origA ); if ( !relationsA ) { relationsA = new Map(); this._relations.set( origA, relationsA ); } relationsA.set( origB, relation ); } } /** * Holds additional contextual information about a transformed pair of operations (`a` and `b`). Those information * can be used for better conflict resolving. * * @typedef {Object} module:engine/model/operation/transform~TransformationContext * * @property {Boolean} aIsStrong Whether `a` is strong operation in this transformation, or weak. * @property {Boolean} aWasUndone Whether `a` operation was undone. * @property {Boolean} bWasUndone Whether `b` operation was undone. * @property {String|null} abRelation The relation between `a` operation and an operation undone by `b` operation. * @property {String|null} baRelation The relation between `b` operation and an operation undone by `a` operation. */ /** * An utility function that updates {@link module:engine/model/operation/operation~Operation#baseVersion base versions} * of passed operations. * * The function simply sets `baseVersion` as a base version of the first passed operation and then increments it for * each following operation in `operations`. * * @private * @param {Array.<module:engine/model/operation/operation~Operation>} operations Operations to update. * @param {Number} baseVersion Base version to set for the first operation in `operations`. */ function updateBaseVersions( operations, baseVersion ) { for ( const operation of operations ) { operation.baseVersion = baseVersion++; } } /** * Adds `howMany` instances of {@link module:engine/model/operation/nooperation~NoOperation} to `operations` set. * * @private * @param {Array.<module:engine/model/operation/operation~Operation>} operations * @param {Number} howMany */ function padWithNoOps( operations, howMany ) { for ( let i = 0; i < howMany; i++ ) { operations.push( new NoOperation( 0 ) ); } } // ----------------------- setTransformation( AttributeOperation, AttributeOperation, ( a, b, context ) => { // If operations in conflict, check if their ranges intersect and manage them properly. // // Operations can be in conflict only if: // // * their key is the same (they change the same attribute), and // * they are in the same parent (operations for ranges [ 1 ] - [ 3 ] and [ 2, 0 ] - [ 2, 5 ] change different // elements and can't be in conflict). if ( a.key === b.key && a.range.start.hasSameParentAs( b.range.start ) ) { // First, we want to apply change to the part of a range that has not been changed by the other operation. const operations = a.range.getDifference( b.range ).map( range => { return new AttributeOperation( range, a.key, a.oldValue, a.newValue, 0 ); } ); // Then we take care of the common part of ranges. const common = a.range.getIntersection( b.range ); if ( common ) { // If this operation is more important, we also want to apply change to the part of the // original range that has already been changed by the other operation. Since that range // got changed we also have to update `oldValue`. if ( context.aIsStrong ) { operations.push( new AttributeOperation( common, b.key, b.newValue, a.newValue, 0 ) ); } } if ( operations.length == 0 ) { return [ new NoOperation( 0 ) ]; } return operations; } else { // If operations don't conflict, simply return an array containing just a clone of this operation. return [ a ]; } } ); setTransformation( AttributeOperation, InsertOperation, ( a, b ) => { // Case 1: // // The attribute operation range includes the position where nodes were inserted. // There are two possible scenarios: the inserted nodes were text and they should receive attributes or // the inserted nodes were elements and they should not receive attributes. // if ( a.range.start.hasSameParentAs( b.position ) && a.range.containsPosition( b.position ) ) { // If new nodes should not receive attributes, two separated ranges will be returned. // Otherwise, one expanded range will be returned. const range = a.range._getTransformedByInsertion( b.position, b.howMany, !b.shouldReceiveAttributes ); const result = range.map( r => { return new AttributeOperation( r, a.key, a.oldValue, a.newValue, a.baseVersion ); } ); if ( b.shouldReceiveAttributes ) { // `AttributeOperation#range` includes some newly inserted text. // The operation should also change the attribute of that text. An example: // // Bold should be applied on the following range: // <p>Fo[zb]ar</p> // // In meantime, new text is typed: // <p>Fozxxbar</p> // // Bold should be applied also on the new text: // <p>Fo[zxxb]ar</p> // <p>Fo<$text bold="true">zxxb</$text>ar</p> // // There is a special case to consider here to consider. // // Consider setting an attribute with multiple possible values, for example `highlight`. The inserted text might // have already an attribute value applied and the `oldValue` property of the attribute operation might be wrong: // // Attribute `highlight="yellow"` should be applied on the following range: // <p>Fo[zb]ar<p> // // In meantime, character `x` with `highlight="red"` is typed: // <p>Fo[z<$text highlight="red">x</$text>b]ar</p> // // In this case we cannot simply apply operation changing the attribute value from `null` to `"yellow"` for the whole range // because that would lead to an exception (`oldValue` is incorrect for `x`). // // We also cannot break the original range as this would mess up a scenario when there are multiple following // insert operations, because then only the first inserted character is included in those ranges: // <p>Fo[z][x][b]ar</p> --> <p>Fo[z][x]x[b]ar</p> --> <p>Fo[z][x]xx[b]ar</p> // // So, the attribute range needs be expanded, no matter what attributes are set on the inserted nodes: // // <p>Fo[z<$text highlight="red">x</$text>b]ar</p> <--- Change from `null` to `yellow`, throwing an exception. // // But before that operation would be applied, we will add an additional attribute operation that will change // attributes on the inserted nodes in a way which would make the original operation correct: // // <p>Fo[z{<$text highlight="red">}x</$text>b]ar</p> <--- Change range `{}` from `red` to `null`. // <p>Fo[zxb]ar</p> <--- Now change from `null` to `yellow` is completely fine. // // Generate complementary attribute operation. Be sure to add it before the original operation. const op = _getComplementaryAttributeOperations( b, a.key, a.oldValue ); if ( op ) { result.unshift( op ); } } // If nodes should not receive new attribute, we are done here. return result; } // If insert operation is not expanding the attribute operation range, simply transform the range. a.range = a.range._getTransformedByInsertion( b.position, b.howMany, false )[ 0 ]; return [ a ]; } ); /** * Helper function for `AttributeOperation` x `InsertOperation` (and reverse) transformation. * * For given `insertOperation` it checks the inserted node if it has an attribute `key` set to a value different * than `newValue`. If so, it generates an `AttributeOperation` which changes the value of `key` attribute to `newValue`. * * @private * @param {module:engine/model/operation/insertoperation~InsertOperation} insertOperation * @param {String} key * @param {*} newValue * @returns {module:engine/model/operation/attributeoperation~AttributeOperation|null} */ function _getComplementaryAttributeOperations( insertOperation, key, newValue ) { const nodes = insertOperation.nodes; // At the beginning we store the attribute value from the first node. const insertValue = nodes.getNode( 0 ).getAttribute( key ); if ( insertValue == newValue ) { return null; } const range = new Range( insertOperation.position, insertOperation.position.getShiftedBy( insertOperation.howMany ) ); return new AttributeOperation( range, key, insertValue, newValue, 0 ); } setTransformation( AttributeOperation, MergeOperation, ( a, b ) => { const ranges = []; // Case 1: // // Attribute change on the merged element. In this case, the merged element was moved to the graveyard. // An additional attribute operation that will change the (re)moved element needs to be generated. // if ( a.range.start.hasSameParentAs( b.deletionPosition ) ) { if ( a.range.containsPosition( b.deletionPosition ) || a.range.start.isEqual( b.deletionPosition ) ) { ranges.push( Range._createFromPositionAndShift( b.graveyardPosition, 1 ) ); } } const range = a.range._getTransformedByMergeOperation( b ); // Do not add empty (collapsed) ranges to the result. `range` may be collapsed if it contained only the merged element. if ( !range.isCollapsed ) { ranges.push( range ); } // Create `AttributeOperation`s out of the ranges. return ranges.map( range => { return new AttributeOperation( range, a.key, a.oldValue, a.newValue, a.baseVersion ); } ); } ); setTransformation( AttributeOperation, MoveOperation, ( a, b ) => { const ranges = _breakRangeByMoveOperation( a.range, b ); // Create `AttributeOperation`s out of the ranges. return ranges.map( range => new AttributeOperation( range, a.key, a.oldValue, a.newValue, a.baseVersion ) ); } ); // Helper function for `AttributeOperation` x `MoveOperation` transformation. // // Takes the passed `range` and transforms it by move operation `moveOp` in a specific way. Only top-level nodes of `range` // are considered to be in the range. If move operation moves nodes deep from inside of the range, those nodes won't // be included in the result. In other words, top-level nodes of the ranges from the result are exactly the same as // top-level nodes of the original `range`. // // This is important for `AttributeOperation` because, for its range, it changes only the top-level nodes. So we need to // track only how those nodes have been affected by `MoveOperation`. // // @private // @param {module:engine/model/range~Range} range // @param {module:engine/model/operation/moveoperation~MoveOperation} moveOp // @returns {Array.<module:engine/model/range~Range>} function _breakRangeByMoveOperation( range, moveOp ) { const moveRange = Range._createFromPositionAndShift( moveOp.sourcePosition, moveOp.howMany ); // We are transforming `range` (original range) by `moveRange` (range moved by move operation). As usual when it comes to // transforming a ranges, we may have a common part of the ranges and we may have a difference part (zero to two ranges). let common = null; let difference = []; // Let's compare the ranges. if ( moveRange.containsRange( range, true ) ) { // If the whole original range is moved, treat it whole as a common part. There's also no difference part. common = range; } else if ( range.start.hasSameParentAs( moveRange.start ) ) { // If the ranges are "on the same level" (in the same parent) then move operation may move exactly those nodes // that are changed by the attribute operation. In this case we get common part and difference part in the usual way. difference = range.getDifference( moveRange ); common = range.getIntersection( moveRange ); } else { // In any other situation we assume that original range is different than move range, that is that move operation // moves other nodes that attribute operation change. Even if the moved range is deep inside in the original range. // // Note that this is different than in `.getIntersection` (we would get a common part in that case) and different // than `.getDifference` (we would get two ranges). difference = [ range ]; } const result = []; // The default behaviour of `_getTransformedByMove` might get wrong results for difference part, though, so // we do it by hand. for ( let diff of difference ) { // First, transform the range by removing moved nodes. Since this is a difference, this is safe, `null` won't be returned // as the range is different than the moved range. diff = diff._getTransformedByDeletion( moveOp.sourcePosition, moveOp.howMany ); // Transform also `targetPosition`. const targetPosition = moveOp.getMovedRangeStart(); // Spread the range only if moved nodes are inserted only between the top-level nodes of the `diff` range. const spread = diff.start.hasSameParentAs( targetPosition ); // Transform by insertion of moved nodes. diff = diff._getTransformedByInsertion( targetPosition, moveOp.howMany, spread ); result.push( ...diff ); } // Common part can be simply transformed by the move operation. This is because move operation will not target to // that common part (the operation would have to target inside its own moved range). if ( common ) { result.push( common._getTransformedByMove( moveOp.sourcePosition, moveOp.targetPosition, moveOp.howMany, false )[ 0 ] ); } return result; } setTransformation( AttributeOperation, SplitOperation, ( a, b ) => { // Case 1: // // Split node is the last node in `AttributeOperation#range`. // `AttributeOperation#range` needs to be expanded to include the new (split) node. // // Attribute `type` to be changed to `numbered` but the `listItem` is split. // <listItem type="bulleted">foobar</listItem> // // After split: // <listItem type="bulleted">foo</listItem><listItem type="bulleted">bar</listItem> // // After attribute change: // <listItem type="numbered">foo</listItem><listItem type="numbered">foo</listItem> // if ( a.range.end.isEqual( b.insertionPosition ) ) { if ( !b.graveyardPosition ) { a.range.end.offset++; } return [ a ]; } // Case 2: // // Split position is inside `AttributeOperation#range`, at the same level, so the nodes to change are // not going to make a flat range. // // Content with range-to-change and split position: // <p>Fo[zb^a]r</p> // // After split: // <p>Fozb</p><p>ar</p> // // Make two separate ranges containing all nodes to change: // <p>Fo[zb]</p><p>[a]r</p> // if ( a.range.start.hasSameParentAs( b.splitPosition ) && a.range.containsPosition( b.splitPosition ) ) { const secondPart = a.clone(); secondPart.range = new Range( b.moveTargetPosition.clone(), a.range.end._getCombined( b.splitPosition, b.moveTargetPosition ) ); a.range.end = b.splitPosition.clone(); a.range.end.stickiness = 'toPrevious'; return [ a, secondPart ]; } // The default case. // a.range = a.range._getTransformedBySplitOperation( b ); return [ a ]; } ); setTransformation( InsertOperation, AttributeOperation, ( a, b ) => { const result = [ a ]; // Case 1: // // The attribute operation range includes the position where nodes were inserted. // There are two possible scenarios: the inserted nodes were text and they should receive attributes or // the inserted nodes were elements and they should not receive attributes. // // This is a mirror scenario to the one described in `AttributeOperation` x `InsertOperation` transformation, // although this case is a little less complicated. In this case we simply need to change attributes of the // inserted nodes and that's it. // if ( a.shouldReceiveAttributes && a.position.hasSameParentAs( b.range.start ) && b.range.containsPosition( a.position ) ) { const op = _getComplementaryAttributeOperations( a, b.key, b.newValue ); if ( op ) { result.push( op ); } } // The default case is: do nothing. // `AttributeOperation` does not change the model tree structure so `InsertOperation` does not need to be changed. // return result; } ); setTransformation( InsertOperation, InsertOperation, ( a, b, context ) => { // Case 1: // // Two insert operations insert nodes at the same position. Since they are the same, it needs to be decided // what will be the order of inserted nodes. However, there is no additional information to help in that // decision. Also, when `b` will be transformed by `a`, the same order must be maintained. // // To achieve that, we will check if the operation is strong. // If it is, it won't get transformed. If it is not, it will be moved. // if ( a.position.isEqual( b.position ) && context.aIsStrong ) { return [ a ]; } // The default case. // a.position = a.position._getTransformedByInsertOperation( b ); return [ a ]; } ); setTransformation( InsertOperation, MoveOperation, ( a, b ) => { // The default case. // a.position = a.position._getTransformedByMoveOperation( b ); return [ a ]; } ); setTransformation( InsertOperation, SplitOperation, ( a, b ) => { // The default case. // a.position = a.position._getTransformedBySplitOperation( b ); return [ a ]; } ); setTransformation( InsertOperation, MergeOperation, ( a, b ) => { a.position = a.position._getTransformedByMergeOperation( b ); return [ a ]; } ); // ----------------------- setTransformation( MarkerOperation, InsertOperation, ( a, b ) => { if ( a.oldRange ) { a.oldRange = a.oldRange._getTransformedByInsertOperation( b )[ 0 ]; } if ( a.newRange ) { a.newRange = a.newRange._getTransformedByInsertOperation( b )[ 0 ]; } return [ a ]; } ); setTransformation( MarkerOperation, MarkerOperation, ( a, b, context ) => { if ( a.name == b.name ) { if ( context.aIsStrong ) { a.oldRange = b.newRange ? b.newRange.clone() : null; } else { return [ new NoOperation( 0 ) ]; } } return [ a ]; } ); setTransformation( MarkerOperation, MergeOperation, ( a, b ) => { if ( a.oldRange ) { a.oldRange = a.oldRange._getTransformedByMergeOperation( b ); } if ( a.newRange ) { a.newRange = a.newRange._getTransformedByMergeOperation( b ); } return [ a ]; } ); setTransformation( MarkerOperation, MoveOperation, ( a, b, context ) => { if ( a.oldRange ) { a.oldRange = Range._createFromRanges( a.oldRange._getTransformedByMoveOperation( b ) ); } if ( a.newRange ) { if ( context.abRelation ) { const aNewRange = Range._createFromRanges( a.newRange._getTransformedByMoveOperation( b ) ); if ( context.abRelation.side == 'left' && b.targetPosition.isEqual( a.newRange.start ) ) { a.newRange.start.path = context.abRelation.path; a.newRange.end = aNewRange.end; return [ a ]; } else if ( context.abRelation.side == 'right' && b.targetPosition.isEqual( a.newRange.end ) ) { a.newRange.start = aNewRange.start; a.newRange.end.path = context.abRelation.path; return [ a ]; } } a.newRange = Range._createFromRanges( a.newRange._getTransformedByMoveOperation( b ) ); } return [ a ]; } ); setTransformation( MarkerOperation, SplitOperation, ( a, b, context ) => { if ( a.oldRange ) { a.oldRange = a.oldRange._getTransformedBySplitOperation( b ); } if ( a.newRange ) { if ( context.abRelation ) { const aNewRange = a.newRange._getTransformedBySplitOperation( b ); if ( a.newRange.start.isEqual( b.splitPosition ) && context.abRelation.wasStartBeforeMergedElement ) { a.newRange.start = Position._createAt( b.insertionPosition ); } else if ( a.newRange.start.isEqual( b.splitPosition ) && !context.abRelation.wasInLeftElement ) { a.newRange.start = Position._createAt( b.moveTargetPosition ); } if ( a.newRange.end.isEqual( b.splitPosition ) && context.abRelation.wasInRightElement )