UNPKG

charms-js

Version:

TypeScript SDK for decoding Bitcoin transactions containing Charms data

278 lines (277 loc) 11.3 kB
"use strict"; var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) { if (k2 === undefined) k2 = k; var desc = Object.getOwnPropertyDescriptor(m, k); if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) { desc = { enumerable: true, get: function() { return m[k]; } }; } Object.defineProperty(o, k2, desc); }) : (function(o, m, k, k2) { if (k2 === undefined) k2 = k; o[k2] = m[k]; })); var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) { Object.defineProperty(o, "default", { enumerable: true, value: v }); }) : function(o, v) { o["default"] = v; }); var __importStar = (this && this.__importStar) || (function () { var ownKeys = function(o) { ownKeys = Object.getOwnPropertyNames || function (o) { var ar = []; for (var k in o) if (Object.prototype.hasOwnProperty.call(o, k)) ar[ar.length] = k; return ar; }; return ownKeys(o); }; return function (mod) { if (mod && mod.__esModule) return mod; var result = {}; if (mod != null) for (var k = ownKeys(mod), i = 0; i < k.length; i++) if (k[i] !== "default") __createBinding(result, mod, k[i]); __setModuleDefault(result, mod); return result; }; })(); Object.defineProperty(exports, "__esModule", { value: true }); exports.CURRENT_VERSION = void 0; exports.extractAndVerifySpell = extractAndVerifySpell; const bitcoin = __importStar(require("bitcoinjs-lib")); const cbor_1 = require("./cbor"); const extractor_1 = require("./extractor"); const snarkjs = require('snarkjs'); // Current version constant exports.CURRENT_VERSION = 4; // Verification key constants from Rust code const V0_SPELL_VK = "0x00e9398ac819e6dd281f81db3ada3fe5159c3cc40222b5ddb0e7584ed2327c5d"; const V1_SPELL_VK = "0x009f38f590ebca4c08c1e97b4064f39e4cd336eea4069669c5f5170a38a1ff97"; const V2_SPELL_VK = "0x00bd312b6026dbe4a2c16da1e8118d4fea31587a4b572b63155252d2daf69280"; const V3_SPELL_VK = "0x0034872b5af38c95fe82fada696b09a448f7ab0928273b7ac8c58ba29db774b9"; const V4_SPELL_VK = "0x00c707a155bf8dc18dc41db2994c214e93e906a3e97b4581db4345b3edd837c5"; // Extract and verify spell from Bitcoin transaction async function extractAndVerifySpell(txHex) { try { // Use existing extractor const spellData = (0, extractor_1.extractSpellData)(txHex); if (!spellData) { throw new Error("no spell data found"); } // Use existing CBOR parser const { spell, proof } = (0, cbor_1.parseSpellAndProof)(spellData); // Validate version (support versions 0-4) if (spell.version < 0 || spell.version > exports.CURRENT_VERSION) { throw new Error(`unsupported spell version: ${spell.version}. Supported versions: 0-${exports.CURRENT_VERSION}.`); } // Add transaction inputs to spell const tx = bitcoin.Transaction.fromHex(txHex); const spellWithInputs = addTransactionInputs(spell, tx); // Perform verification const verified = await verifySpell(proof, spellWithInputs); spellWithInputs.verified = verified; return spellWithInputs; } catch (error) { console.log(`Error in extractAndVerifySpell: ${error.message}`); return null; } } // Add transaction inputs to spell function addTransactionInputs(spell, tx) { // Validate spell structure if (spell.tx.ins !== undefined && spell.tx.ins !== null) { throw new Error("spell must inherit inputs from the enchanted tx"); } if (spell.tx.outs.length > tx.outs.length) { throw new Error("spell tx outs mismatch"); } // Add transaction inputs (excluding the spell input which is last) const txIns = tx.ins.slice(0, -1); const utxoIds = txIns.map(txIn => { const txid = Buffer.from(txIn.hash).reverse().toString('hex'); return `${txid}:${txIn.index}`; }); const spellWithInputs = { ...spell }; spellWithInputs.tx = { ...spell.tx, ins: utxoIds }; return spellWithInputs; } // Verify spell with ZK-SNARK proof async function verifySpell(proof, spell) { try { const spellVk = getVerificationKeyForVersion(spell.version); if (!spellVk) { console.log('Failed to get verification key string'); return false; } // Validate inputs if (!validateVerificationKey(spellVk)) { console.log('Invalid verification key format'); return false; } // Skip ZK verification for empty proofs (spell-only format) if (proof.length === 0) { console.log('Empty proof - structural validation only'); return true; } // Load the verification key object for snarkjs const vKey = loadVerificationKeyForVersion(spell.version); if (!vKey) { console.log('Failed to load verification key object'); return false; } // Convert proof from binary to snarkjs format const snarkjsProof = parseProofFromBinary(proof); if (!snarkjsProof) { console.log('Failed to parse proof'); return false; } // Extract public signals from spell const publicSignals = extractPublicSignalsFromSpell(spell, spellVk); // Perform Groth16 verification using snarkjs console.log('Performing Groth16 verification...'); const isValid = await snarkjs.groth16.verify(vKey, publicSignals, snarkjsProof); console.log(`Verification result: ${isValid ? 'VALID' : 'INVALID'}`); return isValid; } catch (error) { console.log(`Error in verifySpell: ${error.message}`); return false; } } // Get verification key based on spell version and VK identifier function getVerificationKeyForVersion(spellVersion) { try { // Map VK identifiers to their corresponding versions (like in Rust code) const vkMapping = { 0: V0_SPELL_VK, 1: V1_SPELL_VK, 2: V2_SPELL_VK, 3: V3_SPELL_VK, 4: V4_SPELL_VK, }; const spellVk = vkMapping[spellVersion]; if (!spellVk) { console.log(`Unsupported spell version: ${spellVersion}`); return null; } // Load the appropriate VK based on version // In a real implementation, you would load the actual VK from the binary files // For now, we'll create version-specific VKs return spellVk; } catch (error) { console.log(`Error getting verification key: ${error.message}`); return null; } } const vkeys_1 = require("./vkeys"); // Load verification key for specific version function loadVerificationKeyForVersion(version) { try { const vkey = vkeys_1.VKEYS[version.toString()]; if (!vkey) { console.log(`Verification key not found for version ${version}`); return null; } console.log(`Loading VK for version ${version}`); return vkey; } catch (error) { console.log(`Error loading verification key for version ${version}: ${error.message}`); return null; } } // Parse proof from binary format to snarkjs format function parseProofFromBinary(proof) { try { // Groth16 proof consists of 3 G1 points (pi_a, pi_c) and 1 G2 point (pi_b) // Each G1 point is 64 bytes (2 field elements of 32 bytes each) // Each G2 point is 128 bytes (4 field elements of 32 bytes each) // Total expected: 64 + 128 + 64 = 256 bytes for uncompressed format if (proof.length < 192) { // Minimum for compressed format console.log(`Proof too short: ${proof.length} bytes`); return null; } // Helper function to convert bytes to BigInt function bytesToBigInt(bytes) { let result = 0n; for (let i = 0; i < bytes.length; i++) { result = (result << 8n) + BigInt(bytes[i]); } return result; } let offset = 0; // Parse pi_a (G1 point - 2 field elements of 32 bytes each) const pi_a_x = bytesToBigInt(proof.slice(offset, offset + 32)); offset += 32; const pi_a_y = bytesToBigInt(proof.slice(offset, offset + 32)); offset += 32; // Parse pi_b (G2 point - 4 field elements of 32 bytes each) const pi_b_x0 = bytesToBigInt(proof.slice(offset, offset + 32)); offset += 32; const pi_b_x1 = bytesToBigInt(proof.slice(offset, offset + 32)); offset += 32; const pi_b_y0 = bytesToBigInt(proof.slice(offset, offset + 32)); offset += 32; const pi_b_y1 = bytesToBigInt(proof.slice(offset, offset + 32)); offset += 32; // Parse pi_c (G1 point - 2 field elements of 32 bytes each) const pi_c_x = bytesToBigInt(proof.slice(offset, offset + 32)); offset += 32; const pi_c_y = bytesToBigInt(proof.slice(offset, offset + 32)); const snarkjsProof = { pi_a: [pi_a_x.toString(), pi_a_y.toString(), "1"], pi_b: [ [pi_b_x0.toString(), pi_b_x1.toString()], [pi_b_y0.toString(), pi_b_y1.toString()], ["1", "0"] ], pi_c: [pi_c_x.toString(), pi_c_y.toString(), "1"], protocol: "groth16", curve: "bn128" }; return snarkjsProof; } catch (error) { console.log(`Error parsing proof: ${error.message}`); return null; } } // Extract public signals from spell for verification function extractPublicSignalsFromSpell(spell, spellVk) { try { // Based on the Rust code: to_sp1_pv(spell.version, &(spell_vk, &spell)) // This creates SP1PublicValues containing CBOR-encoded (spell_vk, spell) tuple const cbor = require('cbor'); // Create the tuple (spell_vk, spell) as in Rust code const tuple = [spellVk, spell]; // Encode as CBOR const cborEncoded = cbor.encode(tuple); // Convert to hex string for public signals const hexString = Buffer.from(cborEncoded).toString('hex'); // For Groth16, we typically need field elements as public signals // We'll hash the CBOR data to get a field element const crypto = require('crypto'); const hash = crypto.createHash('sha256').update(cborEncoded).digest(); // Convert hash to BigInt and then to string (field element) const hashBigInt = BigInt('0x' + hash.toString('hex')); // Return as array of strings (field elements) return [hashBigInt.toString()]; } catch (error) { console.log(`Error extracting public signals: ${error.message}`); return []; } } // Validate verification key format function validateVerificationKey(spellVk) { if (!spellVk || typeof spellVk !== 'string') { return false; } if (!spellVk.startsWith('0x')) { return false; } const hexPart = spellVk.slice(2); if (hexPart.length !== 64) { return false; } return /^[0-9a-fA-F]+$/.test(hexPart); }