UNPKG

cesium

Version:

CesiumJS is a JavaScript library for creating 3D globes and 2D maps in a web browser without a plugin.

522 lines (487 loc) 17.4 kB
/** * Cesium - https://github.com/CesiumGS/cesium * * Copyright 2011-2020 Cesium Contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Columbus View (Pat. Pend.) * * Portions licensed separately. * See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details. */ define(['exports', './Matrix2-57f130bc', './PolylineVolumeGeometryLibrary-980ed498', './when-4bbc8319', './ComponentDatatype-17ffa790', './PolylinePipeline-0c53e253', './Transforms-f5d400d6'], (function (exports, Matrix2, PolylineVolumeGeometryLibrary, when, ComponentDatatype, PolylinePipeline, Transforms) { 'use strict'; /** * @private */ const CorridorGeometryLibrary = {}; const scratch1 = new Matrix2.Cartesian3(); const scratch2 = new Matrix2.Cartesian3(); const scratch3 = new Matrix2.Cartesian3(); const scratch4 = new Matrix2.Cartesian3(); const scaleArray2 = [new Matrix2.Cartesian3(), new Matrix2.Cartesian3()]; const cartesian1 = new Matrix2.Cartesian3(); const cartesian2 = new Matrix2.Cartesian3(); const cartesian3 = new Matrix2.Cartesian3(); const cartesian4 = new Matrix2.Cartesian3(); const cartesian5 = new Matrix2.Cartesian3(); const cartesian6 = new Matrix2.Cartesian3(); const cartesian7 = new Matrix2.Cartesian3(); const cartesian8 = new Matrix2.Cartesian3(); const cartesian9 = new Matrix2.Cartesian3(); const cartesian10 = new Matrix2.Cartesian3(); const quaterion = new Transforms.Quaternion(); const rotMatrix = new Matrix2.Matrix3(); function computeRoundCorner( cornerPoint, startPoint, endPoint, cornerType, leftIsOutside ) { const angle = Matrix2.Cartesian3.angleBetween( Matrix2.Cartesian3.subtract(startPoint, cornerPoint, scratch1), Matrix2.Cartesian3.subtract(endPoint, cornerPoint, scratch2) ); const granularity = cornerType === PolylineVolumeGeometryLibrary.CornerType.BEVELED ? 1 : Math.ceil(angle / ComponentDatatype.CesiumMath.toRadians(5)) + 1; const size = granularity * 3; const array = new Array(size); array[size - 3] = endPoint.x; array[size - 2] = endPoint.y; array[size - 1] = endPoint.z; let m; if (leftIsOutside) { m = Matrix2.Matrix3.fromQuaternion( Transforms.Quaternion.fromAxisAngle( Matrix2.Cartesian3.negate(cornerPoint, scratch1), angle / granularity, quaterion ), rotMatrix ); } else { m = Matrix2.Matrix3.fromQuaternion( Transforms.Quaternion.fromAxisAngle(cornerPoint, angle / granularity, quaterion), rotMatrix ); } let index = 0; startPoint = Matrix2.Cartesian3.clone(startPoint, scratch1); for (let i = 0; i < granularity; i++) { startPoint = Matrix2.Matrix3.multiplyByVector(m, startPoint, startPoint); array[index++] = startPoint.x; array[index++] = startPoint.y; array[index++] = startPoint.z; } return array; } function addEndCaps(calculatedPositions) { let cornerPoint = cartesian1; let startPoint = cartesian2; let endPoint = cartesian3; let leftEdge = calculatedPositions[1]; startPoint = Matrix2.Cartesian3.fromArray( calculatedPositions[1], leftEdge.length - 3, startPoint ); endPoint = Matrix2.Cartesian3.fromArray(calculatedPositions[0], 0, endPoint); cornerPoint = Matrix2.Cartesian3.midpoint(startPoint, endPoint, cornerPoint); const firstEndCap = computeRoundCorner( cornerPoint, startPoint, endPoint, PolylineVolumeGeometryLibrary.CornerType.ROUNDED, false ); const length = calculatedPositions.length - 1; const rightEdge = calculatedPositions[length - 1]; leftEdge = calculatedPositions[length]; startPoint = Matrix2.Cartesian3.fromArray( rightEdge, rightEdge.length - 3, startPoint ); endPoint = Matrix2.Cartesian3.fromArray(leftEdge, 0, endPoint); cornerPoint = Matrix2.Cartesian3.midpoint(startPoint, endPoint, cornerPoint); const lastEndCap = computeRoundCorner( cornerPoint, startPoint, endPoint, PolylineVolumeGeometryLibrary.CornerType.ROUNDED, false ); return [firstEndCap, lastEndCap]; } function computeMiteredCorner( position, leftCornerDirection, lastPoint, leftIsOutside ) { let cornerPoint = scratch1; if (leftIsOutside) { cornerPoint = Matrix2.Cartesian3.add(position, leftCornerDirection, cornerPoint); } else { leftCornerDirection = Matrix2.Cartesian3.negate( leftCornerDirection, leftCornerDirection ); cornerPoint = Matrix2.Cartesian3.add(position, leftCornerDirection, cornerPoint); } return [ cornerPoint.x, cornerPoint.y, cornerPoint.z, lastPoint.x, lastPoint.y, lastPoint.z, ]; } function addShiftedPositions(positions, left, scalar, calculatedPositions) { const rightPositions = new Array(positions.length); const leftPositions = new Array(positions.length); const scaledLeft = Matrix2.Cartesian3.multiplyByScalar(left, scalar, scratch1); const scaledRight = Matrix2.Cartesian3.negate(scaledLeft, scratch2); let rightIndex = 0; let leftIndex = positions.length - 1; for (let i = 0; i < positions.length; i += 3) { const pos = Matrix2.Cartesian3.fromArray(positions, i, scratch3); const rightPos = Matrix2.Cartesian3.add(pos, scaledRight, scratch4); rightPositions[rightIndex++] = rightPos.x; rightPositions[rightIndex++] = rightPos.y; rightPositions[rightIndex++] = rightPos.z; const leftPos = Matrix2.Cartesian3.add(pos, scaledLeft, scratch4); leftPositions[leftIndex--] = leftPos.z; leftPositions[leftIndex--] = leftPos.y; leftPositions[leftIndex--] = leftPos.x; } calculatedPositions.push(rightPositions, leftPositions); return calculatedPositions; } /** * @private */ CorridorGeometryLibrary.addAttribute = function ( attribute, value, front, back ) { const x = value.x; const y = value.y; const z = value.z; if (when.defined(front)) { attribute[front] = x; attribute[front + 1] = y; attribute[front + 2] = z; } if (when.defined(back)) { attribute[back] = z; attribute[back - 1] = y; attribute[back - 2] = x; } }; const scratchForwardProjection = new Matrix2.Cartesian3(); const scratchBackwardProjection = new Matrix2.Cartesian3(); /** * @private */ CorridorGeometryLibrary.computePositions = function (params) { const granularity = params.granularity; const positions = params.positions; const ellipsoid = params.ellipsoid; const width = params.width / 2; const cornerType = params.cornerType; const saveAttributes = params.saveAttributes; let normal = cartesian1; let forward = cartesian2; let backward = cartesian3; let left = cartesian4; let cornerDirection = cartesian5; let startPoint = cartesian6; let previousPos = cartesian7; let rightPos = cartesian8; let leftPos = cartesian9; let center = cartesian10; let calculatedPositions = []; const calculatedLefts = saveAttributes ? [] : undefined; const calculatedNormals = saveAttributes ? [] : undefined; let position = positions[0]; //add first point let nextPosition = positions[1]; forward = Matrix2.Cartesian3.normalize( Matrix2.Cartesian3.subtract(nextPosition, position, forward), forward ); normal = ellipsoid.geodeticSurfaceNormal(position, normal); left = Matrix2.Cartesian3.normalize(Matrix2.Cartesian3.cross(normal, forward, left), left); if (saveAttributes) { calculatedLefts.push(left.x, left.y, left.z); calculatedNormals.push(normal.x, normal.y, normal.z); } previousPos = Matrix2.Cartesian3.clone(position, previousPos); position = nextPosition; backward = Matrix2.Cartesian3.negate(forward, backward); let subdividedPositions; const corners = []; let i; const length = positions.length; for (i = 1; i < length - 1; i++) { // add middle points and corners normal = ellipsoid.geodeticSurfaceNormal(position, normal); nextPosition = positions[i + 1]; forward = Matrix2.Cartesian3.normalize( Matrix2.Cartesian3.subtract(nextPosition, position, forward), forward ); cornerDirection = Matrix2.Cartesian3.normalize( Matrix2.Cartesian3.add(forward, backward, cornerDirection), cornerDirection ); const forwardProjection = Matrix2.Cartesian3.multiplyByScalar( normal, Matrix2.Cartesian3.dot(forward, normal), scratchForwardProjection ); Matrix2.Cartesian3.subtract(forward, forwardProjection, forwardProjection); Matrix2.Cartesian3.normalize(forwardProjection, forwardProjection); const backwardProjection = Matrix2.Cartesian3.multiplyByScalar( normal, Matrix2.Cartesian3.dot(backward, normal), scratchBackwardProjection ); Matrix2.Cartesian3.subtract(backward, backwardProjection, backwardProjection); Matrix2.Cartesian3.normalize(backwardProjection, backwardProjection); const doCorner = !ComponentDatatype.CesiumMath.equalsEpsilon( Math.abs(Matrix2.Cartesian3.dot(forwardProjection, backwardProjection)), 1.0, ComponentDatatype.CesiumMath.EPSILON7 ); if (doCorner) { cornerDirection = Matrix2.Cartesian3.cross( cornerDirection, normal, cornerDirection ); cornerDirection = Matrix2.Cartesian3.cross( normal, cornerDirection, cornerDirection ); cornerDirection = Matrix2.Cartesian3.normalize(cornerDirection, cornerDirection); const scalar = width / Math.max( 0.25, Matrix2.Cartesian3.magnitude( Matrix2.Cartesian3.cross(cornerDirection, backward, scratch1) ) ); const leftIsOutside = PolylineVolumeGeometryLibrary.PolylineVolumeGeometryLibrary.angleIsGreaterThanPi( forward, backward, position, ellipsoid ); cornerDirection = Matrix2.Cartesian3.multiplyByScalar( cornerDirection, scalar, cornerDirection ); if (leftIsOutside) { rightPos = Matrix2.Cartesian3.add(position, cornerDirection, rightPos); center = Matrix2.Cartesian3.add( rightPos, Matrix2.Cartesian3.multiplyByScalar(left, width, center), center ); leftPos = Matrix2.Cartesian3.add( rightPos, Matrix2.Cartesian3.multiplyByScalar(left, width * 2, leftPos), leftPos ); scaleArray2[0] = Matrix2.Cartesian3.clone(previousPos, scaleArray2[0]); scaleArray2[1] = Matrix2.Cartesian3.clone(center, scaleArray2[1]); subdividedPositions = PolylinePipeline.PolylinePipeline.generateArc({ positions: scaleArray2, granularity: granularity, ellipsoid: ellipsoid, }); calculatedPositions = addShiftedPositions( subdividedPositions, left, width, calculatedPositions ); if (saveAttributes) { calculatedLefts.push(left.x, left.y, left.z); calculatedNormals.push(normal.x, normal.y, normal.z); } startPoint = Matrix2.Cartesian3.clone(leftPos, startPoint); left = Matrix2.Cartesian3.normalize( Matrix2.Cartesian3.cross(normal, forward, left), left ); leftPos = Matrix2.Cartesian3.add( rightPos, Matrix2.Cartesian3.multiplyByScalar(left, width * 2, leftPos), leftPos ); previousPos = Matrix2.Cartesian3.add( rightPos, Matrix2.Cartesian3.multiplyByScalar(left, width, previousPos), previousPos ); if ( cornerType === PolylineVolumeGeometryLibrary.CornerType.ROUNDED || cornerType === PolylineVolumeGeometryLibrary.CornerType.BEVELED ) { corners.push({ leftPositions: computeRoundCorner( rightPos, startPoint, leftPos, cornerType, leftIsOutside ), }); } else { corners.push({ leftPositions: computeMiteredCorner( position, Matrix2.Cartesian3.negate(cornerDirection, cornerDirection), leftPos, leftIsOutside ), }); } } else { leftPos = Matrix2.Cartesian3.add(position, cornerDirection, leftPos); center = Matrix2.Cartesian3.add( leftPos, Matrix2.Cartesian3.negate( Matrix2.Cartesian3.multiplyByScalar(left, width, center), center ), center ); rightPos = Matrix2.Cartesian3.add( leftPos, Matrix2.Cartesian3.negate( Matrix2.Cartesian3.multiplyByScalar(left, width * 2, rightPos), rightPos ), rightPos ); scaleArray2[0] = Matrix2.Cartesian3.clone(previousPos, scaleArray2[0]); scaleArray2[1] = Matrix2.Cartesian3.clone(center, scaleArray2[1]); subdividedPositions = PolylinePipeline.PolylinePipeline.generateArc({ positions: scaleArray2, granularity: granularity, ellipsoid: ellipsoid, }); calculatedPositions = addShiftedPositions( subdividedPositions, left, width, calculatedPositions ); if (saveAttributes) { calculatedLefts.push(left.x, left.y, left.z); calculatedNormals.push(normal.x, normal.y, normal.z); } startPoint = Matrix2.Cartesian3.clone(rightPos, startPoint); left = Matrix2.Cartesian3.normalize( Matrix2.Cartesian3.cross(normal, forward, left), left ); rightPos = Matrix2.Cartesian3.add( leftPos, Matrix2.Cartesian3.negate( Matrix2.Cartesian3.multiplyByScalar(left, width * 2, rightPos), rightPos ), rightPos ); previousPos = Matrix2.Cartesian3.add( leftPos, Matrix2.Cartesian3.negate( Matrix2.Cartesian3.multiplyByScalar(left, width, previousPos), previousPos ), previousPos ); if ( cornerType === PolylineVolumeGeometryLibrary.CornerType.ROUNDED || cornerType === PolylineVolumeGeometryLibrary.CornerType.BEVELED ) { corners.push({ rightPositions: computeRoundCorner( leftPos, startPoint, rightPos, cornerType, leftIsOutside ), }); } else { corners.push({ rightPositions: computeMiteredCorner( position, cornerDirection, rightPos, leftIsOutside ), }); } } backward = Matrix2.Cartesian3.negate(forward, backward); } position = nextPosition; } normal = ellipsoid.geodeticSurfaceNormal(position, normal); scaleArray2[0] = Matrix2.Cartesian3.clone(previousPos, scaleArray2[0]); scaleArray2[1] = Matrix2.Cartesian3.clone(position, scaleArray2[1]); subdividedPositions = PolylinePipeline.PolylinePipeline.generateArc({ positions: scaleArray2, granularity: granularity, ellipsoid: ellipsoid, }); calculatedPositions = addShiftedPositions( subdividedPositions, left, width, calculatedPositions ); if (saveAttributes) { calculatedLefts.push(left.x, left.y, left.z); calculatedNormals.push(normal.x, normal.y, normal.z); } let endPositions; if (cornerType === PolylineVolumeGeometryLibrary.CornerType.ROUNDED) { endPositions = addEndCaps(calculatedPositions); } return { positions: calculatedPositions, corners: corners, lefts: calculatedLefts, normals: calculatedNormals, endPositions: endPositions, }; }; exports.CorridorGeometryLibrary = CorridorGeometryLibrary; })); //# sourceMappingURL=CorridorGeometryLibrary-cdfd69cf.js.map