UNPKG

cesium

Version:

CesiumJS is a JavaScript library for creating 3D globes and 2D maps in a web browser without a plugin.

1,602 lines (1,406 loc) 93.5 kB
import AttributeCompression from "./AttributeCompression.js"; import barycentricCoordinates from "./barycentricCoordinates.js"; import BoundingSphere from "./BoundingSphere.js"; import Cartesian2 from "./Cartesian2.js"; import Cartesian3 from "./Cartesian3.js"; import Cartesian4 from "./Cartesian4.js"; import Cartographic from "./Cartographic.js"; import ComponentDatatype from "./ComponentDatatype.js"; import defaultValue from "./defaultValue.js"; import defined from "./defined.js"; import DeveloperError from "./DeveloperError.js"; import EncodedCartesian3 from "./EncodedCartesian3.js"; import GeographicProjection from "./GeographicProjection.js"; import Geometry from "./Geometry.js"; import GeometryAttribute from "./GeometryAttribute.js"; import GeometryType from "./GeometryType.js"; import IndexDatatype from "./IndexDatatype.js"; import Intersect from "./Intersect.js"; import IntersectionTests from "./IntersectionTests.js"; import CesiumMath from "./Math.js"; import Matrix3 from "./Matrix3.js"; import Matrix4 from "./Matrix4.js"; import Plane from "./Plane.js"; import PrimitiveType from "./PrimitiveType.js"; import Tipsify from "./Tipsify.js"; /** * Content pipeline functions for geometries. * * @namespace GeometryPipeline * * @see Geometry */ var GeometryPipeline = {}; function addTriangle(lines, index, i0, i1, i2) { lines[index++] = i0; lines[index++] = i1; lines[index++] = i1; lines[index++] = i2; lines[index++] = i2; lines[index] = i0; } function trianglesToLines(triangles) { var count = triangles.length; var size = (count / 3) * 6; var lines = IndexDatatype.createTypedArray(count, size); var index = 0; for (var i = 0; i < count; i += 3, index += 6) { addTriangle(lines, index, triangles[i], triangles[i + 1], triangles[i + 2]); } return lines; } function triangleStripToLines(triangles) { var count = triangles.length; if (count >= 3) { var size = (count - 2) * 6; var lines = IndexDatatype.createTypedArray(count, size); addTriangle(lines, 0, triangles[0], triangles[1], triangles[2]); var index = 6; for (var i = 3; i < count; ++i, index += 6) { addTriangle( lines, index, triangles[i - 1], triangles[i], triangles[i - 2] ); } return lines; } return new Uint16Array(); } function triangleFanToLines(triangles) { if (triangles.length > 0) { var count = triangles.length - 1; var size = (count - 1) * 6; var lines = IndexDatatype.createTypedArray(count, size); var base = triangles[0]; var index = 0; for (var i = 1; i < count; ++i, index += 6) { addTriangle(lines, index, base, triangles[i], triangles[i + 1]); } return lines; } return new Uint16Array(); } /** * Converts a geometry's triangle indices to line indices. If the geometry has an <code>indices</code> * and its <code>primitiveType</code> is <code>TRIANGLES</code>, <code>TRIANGLE_STRIP</code>, * <code>TRIANGLE_FAN</code>, it is converted to <code>LINES</code>; otherwise, the geometry is not changed. * <p> * This is commonly used to create a wireframe geometry for visual debugging. * </p> * * @param {Geometry} geometry The geometry to modify. * @returns {Geometry} The modified <code>geometry</code> argument, with its triangle indices converted to lines. * * @exception {DeveloperError} geometry.primitiveType must be TRIANGLES, TRIANGLE_STRIP, or TRIANGLE_FAN. * * @example * geometry = Cesium.GeometryPipeline.toWireframe(geometry); */ GeometryPipeline.toWireframe = function (geometry) { //>>includeStart('debug', pragmas.debug); if (!defined(geometry)) { throw new DeveloperError("geometry is required."); } //>>includeEnd('debug'); var indices = geometry.indices; if (defined(indices)) { switch (geometry.primitiveType) { case PrimitiveType.TRIANGLES: geometry.indices = trianglesToLines(indices); break; case PrimitiveType.TRIANGLE_STRIP: geometry.indices = triangleStripToLines(indices); break; case PrimitiveType.TRIANGLE_FAN: geometry.indices = triangleFanToLines(indices); break; //>>includeStart('debug', pragmas.debug); default: throw new DeveloperError( "geometry.primitiveType must be TRIANGLES, TRIANGLE_STRIP, or TRIANGLE_FAN." ); //>>includeEnd('debug'); } geometry.primitiveType = PrimitiveType.LINES; } return geometry; }; /** * Creates a new {@link Geometry} with <code>LINES</code> representing the provided * attribute (<code>attributeName</code>) for the provided geometry. This is used to * visualize vector attributes like normals, tangents, and bitangents. * * @param {Geometry} geometry The <code>Geometry</code> instance with the attribute. * @param {String} [attributeName='normal'] The name of the attribute. * @param {Number} [length=10000.0] The length of each line segment in meters. This can be negative to point the vector in the opposite direction. * @returns {Geometry} A new <code>Geometry</code> instance with line segments for the vector. * * @exception {DeveloperError} geometry.attributes must have an attribute with the same name as the attributeName parameter. * * @example * var geometry = Cesium.GeometryPipeline.createLineSegmentsForVectors(instance.geometry, 'bitangent', 100000.0); */ GeometryPipeline.createLineSegmentsForVectors = function ( geometry, attributeName, length ) { attributeName = defaultValue(attributeName, "normal"); //>>includeStart('debug', pragmas.debug); if (!defined(geometry)) { throw new DeveloperError("geometry is required."); } if (!defined(geometry.attributes.position)) { throw new DeveloperError("geometry.attributes.position is required."); } if (!defined(geometry.attributes[attributeName])) { throw new DeveloperError( "geometry.attributes must have an attribute with the same name as the attributeName parameter, " + attributeName + "." ); } //>>includeEnd('debug'); length = defaultValue(length, 10000.0); var positions = geometry.attributes.position.values; var vectors = geometry.attributes[attributeName].values; var positionsLength = positions.length; var newPositions = new Float64Array(2 * positionsLength); var j = 0; for (var i = 0; i < positionsLength; i += 3) { newPositions[j++] = positions[i]; newPositions[j++] = positions[i + 1]; newPositions[j++] = positions[i + 2]; newPositions[j++] = positions[i] + vectors[i] * length; newPositions[j++] = positions[i + 1] + vectors[i + 1] * length; newPositions[j++] = positions[i + 2] + vectors[i + 2] * length; } var newBoundingSphere; var bs = geometry.boundingSphere; if (defined(bs)) { newBoundingSphere = new BoundingSphere(bs.center, bs.radius + length); } return new Geometry({ attributes: { position: new GeometryAttribute({ componentDatatype: ComponentDatatype.DOUBLE, componentsPerAttribute: 3, values: newPositions, }), }, primitiveType: PrimitiveType.LINES, boundingSphere: newBoundingSphere, }); }; /** * Creates an object that maps attribute names to unique locations (indices) * for matching vertex attributes and shader programs. * * @param {Geometry} geometry The geometry, which is not modified, to create the object for. * @returns {Object} An object with attribute name / index pairs. * * @example * var attributeLocations = Cesium.GeometryPipeline.createAttributeLocations(geometry); * // Example output * // { * // 'position' : 0, * // 'normal' : 1 * // } */ GeometryPipeline.createAttributeLocations = function (geometry) { //>>includeStart('debug', pragmas.debug); if (!defined(geometry)) { throw new DeveloperError("geometry is required."); } //>>includeEnd('debug') // There can be a WebGL performance hit when attribute 0 is disabled, so // assign attribute locations to well-known attributes. var semantics = [ "position", "positionHigh", "positionLow", // From VertexFormat.position - after 2D projection and high-precision encoding "position3DHigh", "position3DLow", "position2DHigh", "position2DLow", // From Primitive "pickColor", // From VertexFormat "normal", "st", "tangent", "bitangent", // For shadow volumes "extrudeDirection", // From compressing texture coordinates and normals "compressedAttributes", ]; var attributes = geometry.attributes; var indices = {}; var j = 0; var i; var len = semantics.length; // Attribute locations for well-known attributes for (i = 0; i < len; ++i) { var semantic = semantics[i]; if (defined(attributes[semantic])) { indices[semantic] = j++; } } // Locations for custom attributes for (var name in attributes) { if (attributes.hasOwnProperty(name) && !defined(indices[name])) { indices[name] = j++; } } return indices; }; /** * Reorders a geometry's attributes and <code>indices</code> to achieve better performance from the GPU's pre-vertex-shader cache. * * @param {Geometry} geometry The geometry to modify. * @returns {Geometry} The modified <code>geometry</code> argument, with its attributes and indices reordered for the GPU's pre-vertex-shader cache. * * @exception {DeveloperError} Each attribute array in geometry.attributes must have the same number of attributes. * * * @example * geometry = Cesium.GeometryPipeline.reorderForPreVertexCache(geometry); * * @see GeometryPipeline.reorderForPostVertexCache */ GeometryPipeline.reorderForPreVertexCache = function (geometry) { //>>includeStart('debug', pragmas.debug); if (!defined(geometry)) { throw new DeveloperError("geometry is required."); } //>>includeEnd('debug'); var numVertices = Geometry.computeNumberOfVertices(geometry); var indices = geometry.indices; if (defined(indices)) { var indexCrossReferenceOldToNew = new Int32Array(numVertices); for (var i = 0; i < numVertices; i++) { indexCrossReferenceOldToNew[i] = -1; } // Construct cross reference and reorder indices var indicesIn = indices; var numIndices = indicesIn.length; var indicesOut = IndexDatatype.createTypedArray(numVertices, numIndices); var intoIndicesIn = 0; var intoIndicesOut = 0; var nextIndex = 0; var tempIndex; while (intoIndicesIn < numIndices) { tempIndex = indexCrossReferenceOldToNew[indicesIn[intoIndicesIn]]; if (tempIndex !== -1) { indicesOut[intoIndicesOut] = tempIndex; } else { tempIndex = indicesIn[intoIndicesIn]; indexCrossReferenceOldToNew[tempIndex] = nextIndex; indicesOut[intoIndicesOut] = nextIndex; ++nextIndex; } ++intoIndicesIn; ++intoIndicesOut; } geometry.indices = indicesOut; // Reorder attributes var attributes = geometry.attributes; for (var property in attributes) { if ( attributes.hasOwnProperty(property) && defined(attributes[property]) && defined(attributes[property].values) ) { var attribute = attributes[property]; var elementsIn = attribute.values; var intoElementsIn = 0; var numComponents = attribute.componentsPerAttribute; var elementsOut = ComponentDatatype.createTypedArray( attribute.componentDatatype, nextIndex * numComponents ); while (intoElementsIn < numVertices) { var temp = indexCrossReferenceOldToNew[intoElementsIn]; if (temp !== -1) { for (var j = 0; j < numComponents; j++) { elementsOut[numComponents * temp + j] = elementsIn[numComponents * intoElementsIn + j]; } } ++intoElementsIn; } attribute.values = elementsOut; } } } return geometry; }; /** * Reorders a geometry's <code>indices</code> to achieve better performance from the GPU's * post vertex-shader cache by using the Tipsify algorithm. If the geometry <code>primitiveType</code> * is not <code>TRIANGLES</code> or the geometry does not have an <code>indices</code>, this function has no effect. * * @param {Geometry} geometry The geometry to modify. * @param {Number} [cacheCapacity=24] The number of vertices that can be held in the GPU's vertex cache. * @returns {Geometry} The modified <code>geometry</code> argument, with its indices reordered for the post-vertex-shader cache. * * @exception {DeveloperError} cacheCapacity must be greater than two. * * * @example * geometry = Cesium.GeometryPipeline.reorderForPostVertexCache(geometry); * * @see GeometryPipeline.reorderForPreVertexCache * @see {@link http://gfx.cs.princ0eton.edu/pubs/Sander_2007_%3ETR/tipsy.pdf|Fast Triangle Reordering for Vertex Locality and Reduced Overdraw} * by Sander, Nehab, and Barczak */ GeometryPipeline.reorderForPostVertexCache = function ( geometry, cacheCapacity ) { //>>includeStart('debug', pragmas.debug); if (!defined(geometry)) { throw new DeveloperError("geometry is required."); } //>>includeEnd('debug'); var indices = geometry.indices; if (geometry.primitiveType === PrimitiveType.TRIANGLES && defined(indices)) { var numIndices = indices.length; var maximumIndex = 0; for (var j = 0; j < numIndices; j++) { if (indices[j] > maximumIndex) { maximumIndex = indices[j]; } } geometry.indices = Tipsify.tipsify({ indices: indices, maximumIndex: maximumIndex, cacheSize: cacheCapacity, }); } return geometry; }; function copyAttributesDescriptions(attributes) { var newAttributes = {}; for (var attribute in attributes) { if ( attributes.hasOwnProperty(attribute) && defined(attributes[attribute]) && defined(attributes[attribute].values) ) { var attr = attributes[attribute]; newAttributes[attribute] = new GeometryAttribute({ componentDatatype: attr.componentDatatype, componentsPerAttribute: attr.componentsPerAttribute, normalize: attr.normalize, values: [], }); } } return newAttributes; } function copyVertex(destinationAttributes, sourceAttributes, index) { for (var attribute in sourceAttributes) { if ( sourceAttributes.hasOwnProperty(attribute) && defined(sourceAttributes[attribute]) && defined(sourceAttributes[attribute].values) ) { var attr = sourceAttributes[attribute]; for (var k = 0; k < attr.componentsPerAttribute; ++k) { destinationAttributes[attribute].values.push( attr.values[index * attr.componentsPerAttribute + k] ); } } } } /** * Splits a geometry into multiple geometries, if necessary, to ensure that indices in the * <code>indices</code> fit into unsigned shorts. This is used to meet the WebGL requirements * when unsigned int indices are not supported. * <p> * If the geometry does not have any <code>indices</code>, this function has no effect. * </p> * * @param {Geometry} geometry The geometry to be split into multiple geometries. * @returns {Geometry[]} An array of geometries, each with indices that fit into unsigned shorts. * * @exception {DeveloperError} geometry.primitiveType must equal to PrimitiveType.TRIANGLES, PrimitiveType.LINES, or PrimitiveType.POINTS * @exception {DeveloperError} All geometry attribute lists must have the same number of attributes. * * @example * var geometries = Cesium.GeometryPipeline.fitToUnsignedShortIndices(geometry); */ GeometryPipeline.fitToUnsignedShortIndices = function (geometry) { //>>includeStart('debug', pragmas.debug); if (!defined(geometry)) { throw new DeveloperError("geometry is required."); } if ( defined(geometry.indices) && geometry.primitiveType !== PrimitiveType.TRIANGLES && geometry.primitiveType !== PrimitiveType.LINES && geometry.primitiveType !== PrimitiveType.POINTS ) { throw new DeveloperError( "geometry.primitiveType must equal to PrimitiveType.TRIANGLES, PrimitiveType.LINES, or PrimitiveType.POINTS." ); } //>>includeEnd('debug'); var geometries = []; // If there's an index list and more than 64K attributes, it is possible that // some indices are outside the range of unsigned short [0, 64K - 1] var numberOfVertices = Geometry.computeNumberOfVertices(geometry); if ( defined(geometry.indices) && numberOfVertices >= CesiumMath.SIXTY_FOUR_KILOBYTES ) { var oldToNewIndex = []; var newIndices = []; var currentIndex = 0; var newAttributes = copyAttributesDescriptions(geometry.attributes); var originalIndices = geometry.indices; var numberOfIndices = originalIndices.length; var indicesPerPrimitive; if (geometry.primitiveType === PrimitiveType.TRIANGLES) { indicesPerPrimitive = 3; } else if (geometry.primitiveType === PrimitiveType.LINES) { indicesPerPrimitive = 2; } else if (geometry.primitiveType === PrimitiveType.POINTS) { indicesPerPrimitive = 1; } for (var j = 0; j < numberOfIndices; j += indicesPerPrimitive) { for (var k = 0; k < indicesPerPrimitive; ++k) { var x = originalIndices[j + k]; var i = oldToNewIndex[x]; if (!defined(i)) { i = currentIndex++; oldToNewIndex[x] = i; copyVertex(newAttributes, geometry.attributes, x); } newIndices.push(i); } if ( currentIndex + indicesPerPrimitive >= CesiumMath.SIXTY_FOUR_KILOBYTES ) { geometries.push( new Geometry({ attributes: newAttributes, indices: newIndices, primitiveType: geometry.primitiveType, boundingSphere: geometry.boundingSphere, boundingSphereCV: geometry.boundingSphereCV, }) ); // Reset for next vertex-array oldToNewIndex = []; newIndices = []; currentIndex = 0; newAttributes = copyAttributesDescriptions(geometry.attributes); } } if (newIndices.length !== 0) { geometries.push( new Geometry({ attributes: newAttributes, indices: newIndices, primitiveType: geometry.primitiveType, boundingSphere: geometry.boundingSphere, boundingSphereCV: geometry.boundingSphereCV, }) ); } } else { // No need to split into multiple geometries geometries.push(geometry); } return geometries; }; var scratchProjectTo2DCartesian3 = new Cartesian3(); var scratchProjectTo2DCartographic = new Cartographic(); /** * Projects a geometry's 3D <code>position</code> attribute to 2D, replacing the <code>position</code> * attribute with separate <code>position3D</code> and <code>position2D</code> attributes. * <p> * If the geometry does not have a <code>position</code>, this function has no effect. * </p> * * @param {Geometry} geometry The geometry to modify. * @param {String} attributeName The name of the attribute. * @param {String} attributeName3D The name of the attribute in 3D. * @param {String} attributeName2D The name of the attribute in 2D. * @param {Object} [projection=new GeographicProjection()] The projection to use. * @returns {Geometry} The modified <code>geometry</code> argument with <code>position3D</code> and <code>position2D</code> attributes. * * @exception {DeveloperError} geometry must have attribute matching the attributeName argument. * @exception {DeveloperError} The attribute componentDatatype must be ComponentDatatype.DOUBLE. * @exception {DeveloperError} Could not project a point to 2D. * * @example * geometry = Cesium.GeometryPipeline.projectTo2D(geometry, 'position', 'position3D', 'position2D'); */ GeometryPipeline.projectTo2D = function ( geometry, attributeName, attributeName3D, attributeName2D, projection ) { //>>includeStart('debug', pragmas.debug); if (!defined(geometry)) { throw new DeveloperError("geometry is required."); } if (!defined(attributeName)) { throw new DeveloperError("attributeName is required."); } if (!defined(attributeName3D)) { throw new DeveloperError("attributeName3D is required."); } if (!defined(attributeName2D)) { throw new DeveloperError("attributeName2D is required."); } if (!defined(geometry.attributes[attributeName])) { throw new DeveloperError( "geometry must have attribute matching the attributeName argument: " + attributeName + "." ); } if ( geometry.attributes[attributeName].componentDatatype !== ComponentDatatype.DOUBLE ) { throw new DeveloperError( "The attribute componentDatatype must be ComponentDatatype.DOUBLE." ); } //>>includeEnd('debug'); var attribute = geometry.attributes[attributeName]; projection = defined(projection) ? projection : new GeographicProjection(); var ellipsoid = projection.ellipsoid; // Project original values to 2D. var values3D = attribute.values; var projectedValues = new Float64Array(values3D.length); var index = 0; for (var i = 0; i < values3D.length; i += 3) { var value = Cartesian3.fromArray(values3D, i, scratchProjectTo2DCartesian3); var lonLat = ellipsoid.cartesianToCartographic( value, scratchProjectTo2DCartographic ); //>>includeStart('debug', pragmas.debug); if (!defined(lonLat)) { throw new DeveloperError( "Could not project point (" + value.x + ", " + value.y + ", " + value.z + ") to 2D." ); } //>>includeEnd('debug'); var projectedLonLat = projection.project( lonLat, scratchProjectTo2DCartesian3 ); projectedValues[index++] = projectedLonLat.x; projectedValues[index++] = projectedLonLat.y; projectedValues[index++] = projectedLonLat.z; } // Rename original cartesians to WGS84 cartesians. geometry.attributes[attributeName3D] = attribute; // Replace original cartesians with 2D projected cartesians geometry.attributes[attributeName2D] = new GeometryAttribute({ componentDatatype: ComponentDatatype.DOUBLE, componentsPerAttribute: 3, values: projectedValues, }); delete geometry.attributes[attributeName]; return geometry; }; var encodedResult = { high: 0.0, low: 0.0, }; /** * Encodes floating-point geometry attribute values as two separate attributes to improve * rendering precision. * <p> * This is commonly used to create high-precision position vertex attributes. * </p> * * @param {Geometry} geometry The geometry to modify. * @param {String} attributeName The name of the attribute. * @param {String} attributeHighName The name of the attribute for the encoded high bits. * @param {String} attributeLowName The name of the attribute for the encoded low bits. * @returns {Geometry} The modified <code>geometry</code> argument, with its encoded attribute. * * @exception {DeveloperError} geometry must have attribute matching the attributeName argument. * @exception {DeveloperError} The attribute componentDatatype must be ComponentDatatype.DOUBLE. * * @example * geometry = Cesium.GeometryPipeline.encodeAttribute(geometry, 'position3D', 'position3DHigh', 'position3DLow'); */ GeometryPipeline.encodeAttribute = function ( geometry, attributeName, attributeHighName, attributeLowName ) { //>>includeStart('debug', pragmas.debug); if (!defined(geometry)) { throw new DeveloperError("geometry is required."); } if (!defined(attributeName)) { throw new DeveloperError("attributeName is required."); } if (!defined(attributeHighName)) { throw new DeveloperError("attributeHighName is required."); } if (!defined(attributeLowName)) { throw new DeveloperError("attributeLowName is required."); } if (!defined(geometry.attributes[attributeName])) { throw new DeveloperError( "geometry must have attribute matching the attributeName argument: " + attributeName + "." ); } if ( geometry.attributes[attributeName].componentDatatype !== ComponentDatatype.DOUBLE ) { throw new DeveloperError( "The attribute componentDatatype must be ComponentDatatype.DOUBLE." ); } //>>includeEnd('debug'); var attribute = geometry.attributes[attributeName]; var values = attribute.values; var length = values.length; var highValues = new Float32Array(length); var lowValues = new Float32Array(length); for (var i = 0; i < length; ++i) { EncodedCartesian3.encode(values[i], encodedResult); highValues[i] = encodedResult.high; lowValues[i] = encodedResult.low; } var componentsPerAttribute = attribute.componentsPerAttribute; geometry.attributes[attributeHighName] = new GeometryAttribute({ componentDatatype: ComponentDatatype.FLOAT, componentsPerAttribute: componentsPerAttribute, values: highValues, }); geometry.attributes[attributeLowName] = new GeometryAttribute({ componentDatatype: ComponentDatatype.FLOAT, componentsPerAttribute: componentsPerAttribute, values: lowValues, }); delete geometry.attributes[attributeName]; return geometry; }; var scratchCartesian3 = new Cartesian3(); function transformPoint(matrix, attribute) { if (defined(attribute)) { var values = attribute.values; var length = values.length; for (var i = 0; i < length; i += 3) { Cartesian3.unpack(values, i, scratchCartesian3); Matrix4.multiplyByPoint(matrix, scratchCartesian3, scratchCartesian3); Cartesian3.pack(scratchCartesian3, values, i); } } } function transformVector(matrix, attribute) { if (defined(attribute)) { var values = attribute.values; var length = values.length; for (var i = 0; i < length; i += 3) { Cartesian3.unpack(values, i, scratchCartesian3); Matrix3.multiplyByVector(matrix, scratchCartesian3, scratchCartesian3); scratchCartesian3 = Cartesian3.normalize( scratchCartesian3, scratchCartesian3 ); Cartesian3.pack(scratchCartesian3, values, i); } } } var inverseTranspose = new Matrix4(); var normalMatrix = new Matrix3(); /** * Transforms a geometry instance to world coordinates. This changes * the instance's <code>modelMatrix</code> to {@link Matrix4.IDENTITY} and transforms the * following attributes if they are present: <code>position</code>, <code>normal</code>, * <code>tangent</code>, and <code>bitangent</code>. * * @param {GeometryInstance} instance The geometry instance to modify. * @returns {GeometryInstance} The modified <code>instance</code> argument, with its attributes transforms to world coordinates. * * @example * Cesium.GeometryPipeline.transformToWorldCoordinates(instance); */ GeometryPipeline.transformToWorldCoordinates = function (instance) { //>>includeStart('debug', pragmas.debug); if (!defined(instance)) { throw new DeveloperError("instance is required."); } //>>includeEnd('debug'); var modelMatrix = instance.modelMatrix; if (Matrix4.equals(modelMatrix, Matrix4.IDENTITY)) { // Already in world coordinates return instance; } var attributes = instance.geometry.attributes; // Transform attributes in known vertex formats transformPoint(modelMatrix, attributes.position); transformPoint(modelMatrix, attributes.prevPosition); transformPoint(modelMatrix, attributes.nextPosition); if ( defined(attributes.normal) || defined(attributes.tangent) || defined(attributes.bitangent) ) { Matrix4.inverse(modelMatrix, inverseTranspose); Matrix4.transpose(inverseTranspose, inverseTranspose); Matrix4.getMatrix3(inverseTranspose, normalMatrix); transformVector(normalMatrix, attributes.normal); transformVector(normalMatrix, attributes.tangent); transformVector(normalMatrix, attributes.bitangent); } var boundingSphere = instance.geometry.boundingSphere; if (defined(boundingSphere)) { instance.geometry.boundingSphere = BoundingSphere.transform( boundingSphere, modelMatrix, boundingSphere ); } instance.modelMatrix = Matrix4.clone(Matrix4.IDENTITY); return instance; }; function findAttributesInAllGeometries(instances, propertyName) { var length = instances.length; var attributesInAllGeometries = {}; var attributes0 = instances[0][propertyName].attributes; var name; for (name in attributes0) { if ( attributes0.hasOwnProperty(name) && defined(attributes0[name]) && defined(attributes0[name].values) ) { var attribute = attributes0[name]; var numberOfComponents = attribute.values.length; var inAllGeometries = true; // Does this same attribute exist in all geometries? for (var i = 1; i < length; ++i) { var otherAttribute = instances[i][propertyName].attributes[name]; if ( !defined(otherAttribute) || attribute.componentDatatype !== otherAttribute.componentDatatype || attribute.componentsPerAttribute !== otherAttribute.componentsPerAttribute || attribute.normalize !== otherAttribute.normalize ) { inAllGeometries = false; break; } numberOfComponents += otherAttribute.values.length; } if (inAllGeometries) { attributesInAllGeometries[name] = new GeometryAttribute({ componentDatatype: attribute.componentDatatype, componentsPerAttribute: attribute.componentsPerAttribute, normalize: attribute.normalize, values: ComponentDatatype.createTypedArray( attribute.componentDatatype, numberOfComponents ), }); } } } return attributesInAllGeometries; } var tempScratch = new Cartesian3(); function combineGeometries(instances, propertyName) { var length = instances.length; var name; var i; var j; var k; var m = instances[0].modelMatrix; var haveIndices = defined(instances[0][propertyName].indices); var primitiveType = instances[0][propertyName].primitiveType; //>>includeStart('debug', pragmas.debug); for (i = 1; i < length; ++i) { if (!Matrix4.equals(instances[i].modelMatrix, m)) { throw new DeveloperError("All instances must have the same modelMatrix."); } if (defined(instances[i][propertyName].indices) !== haveIndices) { throw new DeveloperError( "All instance geometries must have an indices or not have one." ); } if (instances[i][propertyName].primitiveType !== primitiveType) { throw new DeveloperError( "All instance geometries must have the same primitiveType." ); } } //>>includeEnd('debug'); // Find subset of attributes in all geometries var attributes = findAttributesInAllGeometries(instances, propertyName); var values; var sourceValues; var sourceValuesLength; // Combine attributes from each geometry into a single typed array for (name in attributes) { if (attributes.hasOwnProperty(name)) { values = attributes[name].values; k = 0; for (i = 0; i < length; ++i) { sourceValues = instances[i][propertyName].attributes[name].values; sourceValuesLength = sourceValues.length; for (j = 0; j < sourceValuesLength; ++j) { values[k++] = sourceValues[j]; } } } } // Combine index lists var indices; if (haveIndices) { var numberOfIndices = 0; for (i = 0; i < length; ++i) { numberOfIndices += instances[i][propertyName].indices.length; } var numberOfVertices = Geometry.computeNumberOfVertices( new Geometry({ attributes: attributes, primitiveType: PrimitiveType.POINTS, }) ); var destIndices = IndexDatatype.createTypedArray( numberOfVertices, numberOfIndices ); var destOffset = 0; var offset = 0; for (i = 0; i < length; ++i) { var sourceIndices = instances[i][propertyName].indices; var sourceIndicesLen = sourceIndices.length; for (k = 0; k < sourceIndicesLen; ++k) { destIndices[destOffset++] = offset + sourceIndices[k]; } offset += Geometry.computeNumberOfVertices(instances[i][propertyName]); } indices = destIndices; } // Create bounding sphere that includes all instances var center = new Cartesian3(); var radius = 0.0; var bs; for (i = 0; i < length; ++i) { bs = instances[i][propertyName].boundingSphere; if (!defined(bs)) { // If any geometries have an undefined bounding sphere, then so does the combined geometry center = undefined; break; } Cartesian3.add(bs.center, center, center); } if (defined(center)) { Cartesian3.divideByScalar(center, length, center); for (i = 0; i < length; ++i) { bs = instances[i][propertyName].boundingSphere; var tempRadius = Cartesian3.magnitude( Cartesian3.subtract(bs.center, center, tempScratch) ) + bs.radius; if (tempRadius > radius) { radius = tempRadius; } } } return new Geometry({ attributes: attributes, indices: indices, primitiveType: primitiveType, boundingSphere: defined(center) ? new BoundingSphere(center, radius) : undefined, }); } /** * Combines geometry from several {@link GeometryInstance} objects into one geometry. * This concatenates the attributes, concatenates and adjusts the indices, and creates * a bounding sphere encompassing all instances. * <p> * If the instances do not have the same attributes, a subset of attributes common * to all instances is used, and the others are ignored. * </p> * <p> * This is used by {@link Primitive} to efficiently render a large amount of static data. * </p> * * @private * * @param {GeometryInstance[]} [instances] The array of {@link GeometryInstance} objects whose geometry will be combined. * @returns {Geometry} A single geometry created from the provided geometry instances. * * @exception {DeveloperError} All instances must have the same modelMatrix. * @exception {DeveloperError} All instance geometries must have an indices or not have one. * @exception {DeveloperError} All instance geometries must have the same primitiveType. * * * @example * for (var i = 0; i < instances.length; ++i) { * Cesium.GeometryPipeline.transformToWorldCoordinates(instances[i]); * } * var geometries = Cesium.GeometryPipeline.combineInstances(instances); * * @see GeometryPipeline.transformToWorldCoordinates */ GeometryPipeline.combineInstances = function (instances) { //>>includeStart('debug', pragmas.debug); if (!defined(instances) || instances.length < 1) { throw new DeveloperError( "instances is required and must have length greater than zero." ); } //>>includeEnd('debug'); var instanceGeometry = []; var instanceSplitGeometry = []; var length = instances.length; for (var i = 0; i < length; ++i) { var instance = instances[i]; if (defined(instance.geometry)) { instanceGeometry.push(instance); } else if ( defined(instance.westHemisphereGeometry) && defined(instance.eastHemisphereGeometry) ) { instanceSplitGeometry.push(instance); } } var geometries = []; if (instanceGeometry.length > 0) { geometries.push(combineGeometries(instanceGeometry, "geometry")); } if (instanceSplitGeometry.length > 0) { geometries.push( combineGeometries(instanceSplitGeometry, "westHemisphereGeometry") ); geometries.push( combineGeometries(instanceSplitGeometry, "eastHemisphereGeometry") ); } return geometries; }; var normal = new Cartesian3(); var v0 = new Cartesian3(); var v1 = new Cartesian3(); var v2 = new Cartesian3(); /** * Computes per-vertex normals for a geometry containing <code>TRIANGLES</code> by averaging the normals of * all triangles incident to the vertex. The result is a new <code>normal</code> attribute added to the geometry. * This assumes a counter-clockwise winding order. * * @param {Geometry} geometry The geometry to modify. * @returns {Geometry} The modified <code>geometry</code> argument with the computed <code>normal</code> attribute. * * @exception {DeveloperError} geometry.indices length must be greater than 0 and be a multiple of 3. * @exception {DeveloperError} geometry.primitiveType must be {@link PrimitiveType.TRIANGLES}. * * @example * Cesium.GeometryPipeline.computeNormal(geometry); */ GeometryPipeline.computeNormal = function (geometry) { //>>includeStart('debug', pragmas.debug); if (!defined(geometry)) { throw new DeveloperError("geometry is required."); } if ( !defined(geometry.attributes.position) || !defined(geometry.attributes.position.values) ) { throw new DeveloperError( "geometry.attributes.position.values is required." ); } if (!defined(geometry.indices)) { throw new DeveloperError("geometry.indices is required."); } if (geometry.indices.length < 2 || geometry.indices.length % 3 !== 0) { throw new DeveloperError( "geometry.indices length must be greater than 0 and be a multiple of 3." ); } if (geometry.primitiveType !== PrimitiveType.TRIANGLES) { throw new DeveloperError( "geometry.primitiveType must be PrimitiveType.TRIANGLES." ); } //>>includeEnd('debug'); var indices = geometry.indices; var attributes = geometry.attributes; var vertices = attributes.position.values; var numVertices = attributes.position.values.length / 3; var numIndices = indices.length; var normalsPerVertex = new Array(numVertices); var normalsPerTriangle = new Array(numIndices / 3); var normalIndices = new Array(numIndices); var i; for (i = 0; i < numVertices; i++) { normalsPerVertex[i] = { indexOffset: 0, count: 0, currentCount: 0, }; } var j = 0; for (i = 0; i < numIndices; i += 3) { var i0 = indices[i]; var i1 = indices[i + 1]; var i2 = indices[i + 2]; var i03 = i0 * 3; var i13 = i1 * 3; var i23 = i2 * 3; v0.x = vertices[i03]; v0.y = vertices[i03 + 1]; v0.z = vertices[i03 + 2]; v1.x = vertices[i13]; v1.y = vertices[i13 + 1]; v1.z = vertices[i13 + 2]; v2.x = vertices[i23]; v2.y = vertices[i23 + 1]; v2.z = vertices[i23 + 2]; normalsPerVertex[i0].count++; normalsPerVertex[i1].count++; normalsPerVertex[i2].count++; Cartesian3.subtract(v1, v0, v1); Cartesian3.subtract(v2, v0, v2); normalsPerTriangle[j] = Cartesian3.cross(v1, v2, new Cartesian3()); j++; } var indexOffset = 0; for (i = 0; i < numVertices; i++) { normalsPerVertex[i].indexOffset += indexOffset; indexOffset += normalsPerVertex[i].count; } j = 0; var vertexNormalData; for (i = 0; i < numIndices; i += 3) { vertexNormalData = normalsPerVertex[indices[i]]; var index = vertexNormalData.indexOffset + vertexNormalData.currentCount; normalIndices[index] = j; vertexNormalData.currentCount++; vertexNormalData = normalsPerVertex[indices[i + 1]]; index = vertexNormalData.indexOffset + vertexNormalData.currentCount; normalIndices[index] = j; vertexNormalData.currentCount++; vertexNormalData = normalsPerVertex[indices[i + 2]]; index = vertexNormalData.indexOffset + vertexNormalData.currentCount; normalIndices[index] = j; vertexNormalData.currentCount++; j++; } var normalValues = new Float32Array(numVertices * 3); for (i = 0; i < numVertices; i++) { var i3 = i * 3; vertexNormalData = normalsPerVertex[i]; Cartesian3.clone(Cartesian3.ZERO, normal); if (vertexNormalData.count > 0) { for (j = 0; j < vertexNormalData.count; j++) { Cartesian3.add( normal, normalsPerTriangle[normalIndices[vertexNormalData.indexOffset + j]], normal ); } // We can run into an issue where a vertex is used with 2 primitives that have opposite winding order. if ( Cartesian3.equalsEpsilon(Cartesian3.ZERO, normal, CesiumMath.EPSILON10) ) { Cartesian3.clone( normalsPerTriangle[normalIndices[vertexNormalData.indexOffset]], normal ); } } // We end up with a zero vector probably because of a degenerate triangle if ( Cartesian3.equalsEpsilon(Cartesian3.ZERO, normal, CesiumMath.EPSILON10) ) { // Default to (0,0,1) normal.z = 1.0; } Cartesian3.normalize(normal, normal); normalValues[i3] = normal.x; normalValues[i3 + 1] = normal.y; normalValues[i3 + 2] = normal.z; } geometry.attributes.normal = new GeometryAttribute({ componentDatatype: ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: normalValues, }); return geometry; }; var normalScratch = new Cartesian3(); var normalScale = new Cartesian3(); var tScratch = new Cartesian3(); /** * Computes per-vertex tangents and bitangents for a geometry containing <code>TRIANGLES</code>. * The result is new <code>tangent</code> and <code>bitangent</code> attributes added to the geometry. * This assumes a counter-clockwise winding order. * <p> * Based on <a href="http://www.terathon.com/code/tangent.html">Computing Tangent Space Basis Vectors * for an Arbitrary Mesh</a> by Eric Lengyel. * </p> * * @param {Geometry} geometry The geometry to modify. * @returns {Geometry} The modified <code>geometry</code> argument with the computed <code>tangent</code> and <code>bitangent</code> attributes. * * @exception {DeveloperError} geometry.indices length must be greater than 0 and be a multiple of 3. * @exception {DeveloperError} geometry.primitiveType must be {@link PrimitiveType.TRIANGLES}. * * @example * Cesium.GeometryPipeline.computeTangentAndBiTangent(geometry); */ GeometryPipeline.computeTangentAndBitangent = function (geometry) { //>>includeStart('debug', pragmas.debug); if (!defined(geometry)) { throw new DeveloperError("geometry is required."); } //>>includeEnd('debug'); var attributes = geometry.attributes; var indices = geometry.indices; //>>includeStart('debug', pragmas.debug); if (!defined(attributes.position) || !defined(attributes.position.values)) { throw new DeveloperError( "geometry.attributes.position.values is required." ); } if (!defined(attributes.normal) || !defined(attributes.normal.values)) { throw new DeveloperError("geometry.attributes.normal.values is required."); } if (!defined(attributes.st) || !defined(attributes.st.values)) { throw new DeveloperError("geometry.attributes.st.values is required."); } if (!defined(indices)) { throw new DeveloperError("geometry.indices is required."); } if (indices.length < 2 || indices.length % 3 !== 0) { throw new DeveloperError( "geometry.indices length must be greater than 0 and be a multiple of 3." ); } if (geometry.primitiveType !== PrimitiveType.TRIANGLES) { throw new DeveloperError( "geometry.primitiveType must be PrimitiveType.TRIANGLES." ); } //>>includeEnd('debug'); var vertices = geometry.attributes.position.values; var normals = geometry.attributes.normal.values; var st = geometry.attributes.st.values; var numVertices = geometry.attributes.position.values.length / 3; var numIndices = indices.length; var tan1 = new Array(numVertices * 3); var i; for (i = 0; i < tan1.length; i++) { tan1[i] = 0; } var i03; var i13; var i23; for (i = 0; i < numIndices; i += 3) { var i0 = indices[i]; var i1 = indices[i + 1]; var i2 = indices[i + 2]; i03 = i0 * 3; i13 = i1 * 3; i23 = i2 * 3; var i02 = i0 * 2; var i12 = i1 * 2; var i22 = i2 * 2; var ux = vertices[i03]; var uy = vertices[i03 + 1]; var uz = vertices[i03 + 2]; var wx = st[i02]; var wy = st[i02 + 1]; var t1 = st[i12 + 1] - wy; var t2 = st[i22 + 1] - wy; var r = 1.0 / ((st[i12] - wx) * t2 - (st[i22] - wx) * t1); var sdirx = (t2 * (vertices[i13] - ux) - t1 * (vertices[i23] - ux)) * r; var sdiry = (t2 * (vertices[i13 + 1] - uy) - t1 * (vertices[i23 + 1] - uy)) * r; var sdirz = (t2 * (vertices[i13 + 2] - uz) - t1 * (vertices[i23 + 2] - uz)) * r; tan1[i03] += sdirx; tan1[i03 + 1] += sdiry; tan1[i03 + 2] += sdirz; tan1[i13] += sdirx; tan1[i13 + 1] += sdiry; tan1[i13 + 2] += sdirz; tan1[i23] += sdirx; tan1[i23 + 1] += sdiry; tan1[i23 + 2] += sdirz; } var tangentValues = new Float32Array(numVertices * 3); var bitangentValues = new Float32Array(numVertices * 3); for (i = 0; i < numVertices; i++) { i03 = i * 3; i13 = i03 + 1; i23 = i03 + 2; var n = Cartesian3.fromArray(normals, i03, normalScratch); var t = Cartesian3.fromArray(tan1, i03, tScratch); var scalar = Cartesian3.dot(n, t); Cartesian3.multiplyByScalar(n, scalar, normalScale); Cartesian3.normalize(Cartesian3.subtract(t, normalScale, t), t); tangentValues[i03] = t.x; tangentValues[i13] = t.y; tangentValues[i23] = t.z; Cartesian3.normalize(Cartesian3.cross(n, t, t), t); bitangentValues[i03] = t.x; bitangentValues[i13] = t.y; bitangentValues[i23] = t.z; } geometry.attributes.tangent = new GeometryAttribute({ componentDatatype: ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: tangentValues, }); geometry.attributes.bitangent = new GeometryAttribute({ componentDatatype: ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: bitangentValues, }); return geometry; }; var scratchCartesian2 = new Cartesian2(); var toEncode1 = new Cartesian3(); var toEncode2 = new Cartesian3(); var toEncode3 = new Cartesian3(); var encodeResult2 = new Cartesian2(); /** * Compresses and packs geometry normal attribute values to save memory. * * @param {Geometry} geometry The geometry to modify. * @returns {Geometry} The modified <code>geometry</code> argument, with its normals compressed and packed. * * @example * geometry = Cesium.GeometryPipeline.compressVertices(geometry); */ GeometryPipeline.compressVertices = function (geometry) { //>>includeStart('debug', pragmas.debug); if (!defined(geometry)) { throw new DeveloperError("geometry is required."); } //>>includeEnd('debug'); var extrudeAttribute = geometry.attributes.extrudeDirection; var i; var numVertices; if (defined(extrudeAttribute)) { //only shadow volumes use extrudeDirection, and shadow volumes use vertexFormat: POSITION_ONLY so we don't need to check other attributes var extrudeDirections = extrudeAttribute.values; numVertices = extrudeDirections.length / 3.0; var compressedDirections = new Float32Array(numVertices * 2); var i2 = 0; for (i = 0; i < numVertices; ++i) { Cartesian3.fromArray(extrudeDirections, i * 3.0, toEncode1); if (Cartesian3.equals(toEncode1, Cartesian3.ZERO)) { i2 += 2; continue; } encodeResult2 = AttributeCompression.octEncodeInRange( toEncode1, 65535, encodeResult2 ); compressedDirections[i2++] = encodeResult2.x; compressedDirections[i2++] = encodeResult2.y; } geometry.attributes.compressedAttributes = new GeometryAttribute({ componentDatatype: ComponentDatatype.FLOAT, componentsPerAttribute: 2, values: compressedDirections, }); delete geometry.attributes.extrudeDirection; return geometry; } var normalAttribute = geometry.attributes.normal; var stAttribute = geometry.attributes.st; var hasNormal = defined(normalAttribute); var hasSt = defined(stAttribute); if (!hasNormal && !hasSt) { return geometry; } var tangentAttribute = geometry.attributes.tangent; var bitangentAttribute = geometry.attributes.bitangent; var hasTangent = defined(tangentAttribute); var hasBitangent = defined(bitangentAttribute); var normals; var st; var tangents; var bitangents; if (hasNormal) { normals = normalAttribute.values; } if (hasSt) { st = stAttribute.values; } if (hasTangent) { tangents = tangentAttribute.values; } if (hasBitangent) { bitangents = bitangentAttribute.values; } var length = hasNormal ? normals.length : st.length; var numComponents = hasNormal ? 3.0 : 2.0; numVertices = length / numComponents; var compressedLength = numVertices; var numCompressedComponents = hasSt && hasNormal ? 2.0 : 1.0; numCompressedComponents += hasTangent || hasBitangent ? 1.0 : 0.0; compressedLength *= numCompressedComponents; var compressedAttributes = new Float32Array(compressedLength); var normalIndex = 0; for (i = 0; i < numVertices; ++i) { if (hasSt) { Cartesian2.fromArray(st, i * 2.0, scratchCartesian2); compressedAttributes[ normalIndex++ ] = AttributeCompression.compressTextureCoordinates(scratchCartesian2); } var index = i * 3.0; if (hasNormal && defined(tangents) && defined(bitangents)) { Cartesian3.fromArray(normals, index, toEncode1); Cartesian3.fromArray(tangents, index, toEncode2); Cartesian3.fromArray(bitangents, index, toEncode3); AttributeCompression.octPack( toEncode1, toEncode2, toEncode3, scratchCartesian2 ); compressedAttributes[normalIndex++] = scratchCartesian2.x; compressedAttributes[normalIndex++] = scratchCartesian2.y; } else { if (hasNormal) { Cartesian3.fromArray(normals, index, toEncode1); compressedAttributes[ normalIndex++ ] = AttributeCompression.octEncodeFloa