cesium
Version:
CesiumJS is a JavaScript library for creating 3D globes and 2D maps in a web browser without a plugin.
1,602 lines (1,406 loc) • 93.5 kB
JavaScript
import AttributeCompression from "./AttributeCompression.js";
import barycentricCoordinates from "./barycentricCoordinates.js";
import BoundingSphere from "./BoundingSphere.js";
import Cartesian2 from "./Cartesian2.js";
import Cartesian3 from "./Cartesian3.js";
import Cartesian4 from "./Cartesian4.js";
import Cartographic from "./Cartographic.js";
import ComponentDatatype from "./ComponentDatatype.js";
import defaultValue from "./defaultValue.js";
import defined from "./defined.js";
import DeveloperError from "./DeveloperError.js";
import EncodedCartesian3 from "./EncodedCartesian3.js";
import GeographicProjection from "./GeographicProjection.js";
import Geometry from "./Geometry.js";
import GeometryAttribute from "./GeometryAttribute.js";
import GeometryType from "./GeometryType.js";
import IndexDatatype from "./IndexDatatype.js";
import Intersect from "./Intersect.js";
import IntersectionTests from "./IntersectionTests.js";
import CesiumMath from "./Math.js";
import Matrix3 from "./Matrix3.js";
import Matrix4 from "./Matrix4.js";
import Plane from "./Plane.js";
import PrimitiveType from "./PrimitiveType.js";
import Tipsify from "./Tipsify.js";
/**
* Content pipeline functions for geometries.
*
* @namespace GeometryPipeline
*
* @see Geometry
*/
var GeometryPipeline = {};
function addTriangle(lines, index, i0, i1, i2) {
lines[index++] = i0;
lines[index++] = i1;
lines[index++] = i1;
lines[index++] = i2;
lines[index++] = i2;
lines[index] = i0;
}
function trianglesToLines(triangles) {
var count = triangles.length;
var size = (count / 3) * 6;
var lines = IndexDatatype.createTypedArray(count, size);
var index = 0;
for (var i = 0; i < count; i += 3, index += 6) {
addTriangle(lines, index, triangles[i], triangles[i + 1], triangles[i + 2]);
}
return lines;
}
function triangleStripToLines(triangles) {
var count = triangles.length;
if (count >= 3) {
var size = (count - 2) * 6;
var lines = IndexDatatype.createTypedArray(count, size);
addTriangle(lines, 0, triangles[0], triangles[1], triangles[2]);
var index = 6;
for (var i = 3; i < count; ++i, index += 6) {
addTriangle(
lines,
index,
triangles[i - 1],
triangles[i],
triangles[i - 2]
);
}
return lines;
}
return new Uint16Array();
}
function triangleFanToLines(triangles) {
if (triangles.length > 0) {
var count = triangles.length - 1;
var size = (count - 1) * 6;
var lines = IndexDatatype.createTypedArray(count, size);
var base = triangles[0];
var index = 0;
for (var i = 1; i < count; ++i, index += 6) {
addTriangle(lines, index, base, triangles[i], triangles[i + 1]);
}
return lines;
}
return new Uint16Array();
}
/**
* Converts a geometry's triangle indices to line indices. If the geometry has an <code>indices</code>
* and its <code>primitiveType</code> is <code>TRIANGLES</code>, <code>TRIANGLE_STRIP</code>,
* <code>TRIANGLE_FAN</code>, it is converted to <code>LINES</code>; otherwise, the geometry is not changed.
* <p>
* This is commonly used to create a wireframe geometry for visual debugging.
* </p>
*
* @param {Geometry} geometry The geometry to modify.
* @returns {Geometry} The modified <code>geometry</code> argument, with its triangle indices converted to lines.
*
* @exception {DeveloperError} geometry.primitiveType must be TRIANGLES, TRIANGLE_STRIP, or TRIANGLE_FAN.
*
* @example
* geometry = Cesium.GeometryPipeline.toWireframe(geometry);
*/
GeometryPipeline.toWireframe = function (geometry) {
//>>includeStart('debug', pragmas.debug);
if (!defined(geometry)) {
throw new DeveloperError("geometry is required.");
}
//>>includeEnd('debug');
var indices = geometry.indices;
if (defined(indices)) {
switch (geometry.primitiveType) {
case PrimitiveType.TRIANGLES:
geometry.indices = trianglesToLines(indices);
break;
case PrimitiveType.TRIANGLE_STRIP:
geometry.indices = triangleStripToLines(indices);
break;
case PrimitiveType.TRIANGLE_FAN:
geometry.indices = triangleFanToLines(indices);
break;
//>>includeStart('debug', pragmas.debug);
default:
throw new DeveloperError(
"geometry.primitiveType must be TRIANGLES, TRIANGLE_STRIP, or TRIANGLE_FAN."
);
//>>includeEnd('debug');
}
geometry.primitiveType = PrimitiveType.LINES;
}
return geometry;
};
/**
* Creates a new {@link Geometry} with <code>LINES</code> representing the provided
* attribute (<code>attributeName</code>) for the provided geometry. This is used to
* visualize vector attributes like normals, tangents, and bitangents.
*
* @param {Geometry} geometry The <code>Geometry</code> instance with the attribute.
* @param {String} [attributeName='normal'] The name of the attribute.
* @param {Number} [length=10000.0] The length of each line segment in meters. This can be negative to point the vector in the opposite direction.
* @returns {Geometry} A new <code>Geometry</code> instance with line segments for the vector.
*
* @exception {DeveloperError} geometry.attributes must have an attribute with the same name as the attributeName parameter.
*
* @example
* var geometry = Cesium.GeometryPipeline.createLineSegmentsForVectors(instance.geometry, 'bitangent', 100000.0);
*/
GeometryPipeline.createLineSegmentsForVectors = function (
geometry,
attributeName,
length
) {
attributeName = defaultValue(attributeName, "normal");
//>>includeStart('debug', pragmas.debug);
if (!defined(geometry)) {
throw new DeveloperError("geometry is required.");
}
if (!defined(geometry.attributes.position)) {
throw new DeveloperError("geometry.attributes.position is required.");
}
if (!defined(geometry.attributes[attributeName])) {
throw new DeveloperError(
"geometry.attributes must have an attribute with the same name as the attributeName parameter, " +
attributeName +
"."
);
}
//>>includeEnd('debug');
length = defaultValue(length, 10000.0);
var positions = geometry.attributes.position.values;
var vectors = geometry.attributes[attributeName].values;
var positionsLength = positions.length;
var newPositions = new Float64Array(2 * positionsLength);
var j = 0;
for (var i = 0; i < positionsLength; i += 3) {
newPositions[j++] = positions[i];
newPositions[j++] = positions[i + 1];
newPositions[j++] = positions[i + 2];
newPositions[j++] = positions[i] + vectors[i] * length;
newPositions[j++] = positions[i + 1] + vectors[i + 1] * length;
newPositions[j++] = positions[i + 2] + vectors[i + 2] * length;
}
var newBoundingSphere;
var bs = geometry.boundingSphere;
if (defined(bs)) {
newBoundingSphere = new BoundingSphere(bs.center, bs.radius + length);
}
return new Geometry({
attributes: {
position: new GeometryAttribute({
componentDatatype: ComponentDatatype.DOUBLE,
componentsPerAttribute: 3,
values: newPositions,
}),
},
primitiveType: PrimitiveType.LINES,
boundingSphere: newBoundingSphere,
});
};
/**
* Creates an object that maps attribute names to unique locations (indices)
* for matching vertex attributes and shader programs.
*
* @param {Geometry} geometry The geometry, which is not modified, to create the object for.
* @returns {Object} An object with attribute name / index pairs.
*
* @example
* var attributeLocations = Cesium.GeometryPipeline.createAttributeLocations(geometry);
* // Example output
* // {
* // 'position' : 0,
* // 'normal' : 1
* // }
*/
GeometryPipeline.createAttributeLocations = function (geometry) {
//>>includeStart('debug', pragmas.debug);
if (!defined(geometry)) {
throw new DeveloperError("geometry is required.");
}
//>>includeEnd('debug')
// There can be a WebGL performance hit when attribute 0 is disabled, so
// assign attribute locations to well-known attributes.
var semantics = [
"position",
"positionHigh",
"positionLow",
// From VertexFormat.position - after 2D projection and high-precision encoding
"position3DHigh",
"position3DLow",
"position2DHigh",
"position2DLow",
// From Primitive
"pickColor",
// From VertexFormat
"normal",
"st",
"tangent",
"bitangent",
// For shadow volumes
"extrudeDirection",
// From compressing texture coordinates and normals
"compressedAttributes",
];
var attributes = geometry.attributes;
var indices = {};
var j = 0;
var i;
var len = semantics.length;
// Attribute locations for well-known attributes
for (i = 0; i < len; ++i) {
var semantic = semantics[i];
if (defined(attributes[semantic])) {
indices[semantic] = j++;
}
}
// Locations for custom attributes
for (var name in attributes) {
if (attributes.hasOwnProperty(name) && !defined(indices[name])) {
indices[name] = j++;
}
}
return indices;
};
/**
* Reorders a geometry's attributes and <code>indices</code> to achieve better performance from the GPU's pre-vertex-shader cache.
*
* @param {Geometry} geometry The geometry to modify.
* @returns {Geometry} The modified <code>geometry</code> argument, with its attributes and indices reordered for the GPU's pre-vertex-shader cache.
*
* @exception {DeveloperError} Each attribute array in geometry.attributes must have the same number of attributes.
*
*
* @example
* geometry = Cesium.GeometryPipeline.reorderForPreVertexCache(geometry);
*
* @see GeometryPipeline.reorderForPostVertexCache
*/
GeometryPipeline.reorderForPreVertexCache = function (geometry) {
//>>includeStart('debug', pragmas.debug);
if (!defined(geometry)) {
throw new DeveloperError("geometry is required.");
}
//>>includeEnd('debug');
var numVertices = Geometry.computeNumberOfVertices(geometry);
var indices = geometry.indices;
if (defined(indices)) {
var indexCrossReferenceOldToNew = new Int32Array(numVertices);
for (var i = 0; i < numVertices; i++) {
indexCrossReferenceOldToNew[i] = -1;
}
// Construct cross reference and reorder indices
var indicesIn = indices;
var numIndices = indicesIn.length;
var indicesOut = IndexDatatype.createTypedArray(numVertices, numIndices);
var intoIndicesIn = 0;
var intoIndicesOut = 0;
var nextIndex = 0;
var tempIndex;
while (intoIndicesIn < numIndices) {
tempIndex = indexCrossReferenceOldToNew[indicesIn[intoIndicesIn]];
if (tempIndex !== -1) {
indicesOut[intoIndicesOut] = tempIndex;
} else {
tempIndex = indicesIn[intoIndicesIn];
indexCrossReferenceOldToNew[tempIndex] = nextIndex;
indicesOut[intoIndicesOut] = nextIndex;
++nextIndex;
}
++intoIndicesIn;
++intoIndicesOut;
}
geometry.indices = indicesOut;
// Reorder attributes
var attributes = geometry.attributes;
for (var property in attributes) {
if (
attributes.hasOwnProperty(property) &&
defined(attributes[property]) &&
defined(attributes[property].values)
) {
var attribute = attributes[property];
var elementsIn = attribute.values;
var intoElementsIn = 0;
var numComponents = attribute.componentsPerAttribute;
var elementsOut = ComponentDatatype.createTypedArray(
attribute.componentDatatype,
nextIndex * numComponents
);
while (intoElementsIn < numVertices) {
var temp = indexCrossReferenceOldToNew[intoElementsIn];
if (temp !== -1) {
for (var j = 0; j < numComponents; j++) {
elementsOut[numComponents * temp + j] =
elementsIn[numComponents * intoElementsIn + j];
}
}
++intoElementsIn;
}
attribute.values = elementsOut;
}
}
}
return geometry;
};
/**
* Reorders a geometry's <code>indices</code> to achieve better performance from the GPU's
* post vertex-shader cache by using the Tipsify algorithm. If the geometry <code>primitiveType</code>
* is not <code>TRIANGLES</code> or the geometry does not have an <code>indices</code>, this function has no effect.
*
* @param {Geometry} geometry The geometry to modify.
* @param {Number} [cacheCapacity=24] The number of vertices that can be held in the GPU's vertex cache.
* @returns {Geometry} The modified <code>geometry</code> argument, with its indices reordered for the post-vertex-shader cache.
*
* @exception {DeveloperError} cacheCapacity must be greater than two.
*
*
* @example
* geometry = Cesium.GeometryPipeline.reorderForPostVertexCache(geometry);
*
* @see GeometryPipeline.reorderForPreVertexCache
* @see {@link http://gfx.cs.princ0eton.edu/pubs/Sander_2007_%3ETR/tipsy.pdf|Fast Triangle Reordering for Vertex Locality and Reduced Overdraw}
* by Sander, Nehab, and Barczak
*/
GeometryPipeline.reorderForPostVertexCache = function (
geometry,
cacheCapacity
) {
//>>includeStart('debug', pragmas.debug);
if (!defined(geometry)) {
throw new DeveloperError("geometry is required.");
}
//>>includeEnd('debug');
var indices = geometry.indices;
if (geometry.primitiveType === PrimitiveType.TRIANGLES && defined(indices)) {
var numIndices = indices.length;
var maximumIndex = 0;
for (var j = 0; j < numIndices; j++) {
if (indices[j] > maximumIndex) {
maximumIndex = indices[j];
}
}
geometry.indices = Tipsify.tipsify({
indices: indices,
maximumIndex: maximumIndex,
cacheSize: cacheCapacity,
});
}
return geometry;
};
function copyAttributesDescriptions(attributes) {
var newAttributes = {};
for (var attribute in attributes) {
if (
attributes.hasOwnProperty(attribute) &&
defined(attributes[attribute]) &&
defined(attributes[attribute].values)
) {
var attr = attributes[attribute];
newAttributes[attribute] = new GeometryAttribute({
componentDatatype: attr.componentDatatype,
componentsPerAttribute: attr.componentsPerAttribute,
normalize: attr.normalize,
values: [],
});
}
}
return newAttributes;
}
function copyVertex(destinationAttributes, sourceAttributes, index) {
for (var attribute in sourceAttributes) {
if (
sourceAttributes.hasOwnProperty(attribute) &&
defined(sourceAttributes[attribute]) &&
defined(sourceAttributes[attribute].values)
) {
var attr = sourceAttributes[attribute];
for (var k = 0; k < attr.componentsPerAttribute; ++k) {
destinationAttributes[attribute].values.push(
attr.values[index * attr.componentsPerAttribute + k]
);
}
}
}
}
/**
* Splits a geometry into multiple geometries, if necessary, to ensure that indices in the
* <code>indices</code> fit into unsigned shorts. This is used to meet the WebGL requirements
* when unsigned int indices are not supported.
* <p>
* If the geometry does not have any <code>indices</code>, this function has no effect.
* </p>
*
* @param {Geometry} geometry The geometry to be split into multiple geometries.
* @returns {Geometry[]} An array of geometries, each with indices that fit into unsigned shorts.
*
* @exception {DeveloperError} geometry.primitiveType must equal to PrimitiveType.TRIANGLES, PrimitiveType.LINES, or PrimitiveType.POINTS
* @exception {DeveloperError} All geometry attribute lists must have the same number of attributes.
*
* @example
* var geometries = Cesium.GeometryPipeline.fitToUnsignedShortIndices(geometry);
*/
GeometryPipeline.fitToUnsignedShortIndices = function (geometry) {
//>>includeStart('debug', pragmas.debug);
if (!defined(geometry)) {
throw new DeveloperError("geometry is required.");
}
if (
defined(geometry.indices) &&
geometry.primitiveType !== PrimitiveType.TRIANGLES &&
geometry.primitiveType !== PrimitiveType.LINES &&
geometry.primitiveType !== PrimitiveType.POINTS
) {
throw new DeveloperError(
"geometry.primitiveType must equal to PrimitiveType.TRIANGLES, PrimitiveType.LINES, or PrimitiveType.POINTS."
);
}
//>>includeEnd('debug');
var geometries = [];
// If there's an index list and more than 64K attributes, it is possible that
// some indices are outside the range of unsigned short [0, 64K - 1]
var numberOfVertices = Geometry.computeNumberOfVertices(geometry);
if (
defined(geometry.indices) &&
numberOfVertices >= CesiumMath.SIXTY_FOUR_KILOBYTES
) {
var oldToNewIndex = [];
var newIndices = [];
var currentIndex = 0;
var newAttributes = copyAttributesDescriptions(geometry.attributes);
var originalIndices = geometry.indices;
var numberOfIndices = originalIndices.length;
var indicesPerPrimitive;
if (geometry.primitiveType === PrimitiveType.TRIANGLES) {
indicesPerPrimitive = 3;
} else if (geometry.primitiveType === PrimitiveType.LINES) {
indicesPerPrimitive = 2;
} else if (geometry.primitiveType === PrimitiveType.POINTS) {
indicesPerPrimitive = 1;
}
for (var j = 0; j < numberOfIndices; j += indicesPerPrimitive) {
for (var k = 0; k < indicesPerPrimitive; ++k) {
var x = originalIndices[j + k];
var i = oldToNewIndex[x];
if (!defined(i)) {
i = currentIndex++;
oldToNewIndex[x] = i;
copyVertex(newAttributes, geometry.attributes, x);
}
newIndices.push(i);
}
if (
currentIndex + indicesPerPrimitive >=
CesiumMath.SIXTY_FOUR_KILOBYTES
) {
geometries.push(
new Geometry({
attributes: newAttributes,
indices: newIndices,
primitiveType: geometry.primitiveType,
boundingSphere: geometry.boundingSphere,
boundingSphereCV: geometry.boundingSphereCV,
})
);
// Reset for next vertex-array
oldToNewIndex = [];
newIndices = [];
currentIndex = 0;
newAttributes = copyAttributesDescriptions(geometry.attributes);
}
}
if (newIndices.length !== 0) {
geometries.push(
new Geometry({
attributes: newAttributes,
indices: newIndices,
primitiveType: geometry.primitiveType,
boundingSphere: geometry.boundingSphere,
boundingSphereCV: geometry.boundingSphereCV,
})
);
}
} else {
// No need to split into multiple geometries
geometries.push(geometry);
}
return geometries;
};
var scratchProjectTo2DCartesian3 = new Cartesian3();
var scratchProjectTo2DCartographic = new Cartographic();
/**
* Projects a geometry's 3D <code>position</code> attribute to 2D, replacing the <code>position</code>
* attribute with separate <code>position3D</code> and <code>position2D</code> attributes.
* <p>
* If the geometry does not have a <code>position</code>, this function has no effect.
* </p>
*
* @param {Geometry} geometry The geometry to modify.
* @param {String} attributeName The name of the attribute.
* @param {String} attributeName3D The name of the attribute in 3D.
* @param {String} attributeName2D The name of the attribute in 2D.
* @param {Object} [projection=new GeographicProjection()] The projection to use.
* @returns {Geometry} The modified <code>geometry</code> argument with <code>position3D</code> and <code>position2D</code> attributes.
*
* @exception {DeveloperError} geometry must have attribute matching the attributeName argument.
* @exception {DeveloperError} The attribute componentDatatype must be ComponentDatatype.DOUBLE.
* @exception {DeveloperError} Could not project a point to 2D.
*
* @example
* geometry = Cesium.GeometryPipeline.projectTo2D(geometry, 'position', 'position3D', 'position2D');
*/
GeometryPipeline.projectTo2D = function (
geometry,
attributeName,
attributeName3D,
attributeName2D,
projection
) {
//>>includeStart('debug', pragmas.debug);
if (!defined(geometry)) {
throw new DeveloperError("geometry is required.");
}
if (!defined(attributeName)) {
throw new DeveloperError("attributeName is required.");
}
if (!defined(attributeName3D)) {
throw new DeveloperError("attributeName3D is required.");
}
if (!defined(attributeName2D)) {
throw new DeveloperError("attributeName2D is required.");
}
if (!defined(geometry.attributes[attributeName])) {
throw new DeveloperError(
"geometry must have attribute matching the attributeName argument: " +
attributeName +
"."
);
}
if (
geometry.attributes[attributeName].componentDatatype !==
ComponentDatatype.DOUBLE
) {
throw new DeveloperError(
"The attribute componentDatatype must be ComponentDatatype.DOUBLE."
);
}
//>>includeEnd('debug');
var attribute = geometry.attributes[attributeName];
projection = defined(projection) ? projection : new GeographicProjection();
var ellipsoid = projection.ellipsoid;
// Project original values to 2D.
var values3D = attribute.values;
var projectedValues = new Float64Array(values3D.length);
var index = 0;
for (var i = 0; i < values3D.length; i += 3) {
var value = Cartesian3.fromArray(values3D, i, scratchProjectTo2DCartesian3);
var lonLat = ellipsoid.cartesianToCartographic(
value,
scratchProjectTo2DCartographic
);
//>>includeStart('debug', pragmas.debug);
if (!defined(lonLat)) {
throw new DeveloperError(
"Could not project point (" +
value.x +
", " +
value.y +
", " +
value.z +
") to 2D."
);
}
//>>includeEnd('debug');
var projectedLonLat = projection.project(
lonLat,
scratchProjectTo2DCartesian3
);
projectedValues[index++] = projectedLonLat.x;
projectedValues[index++] = projectedLonLat.y;
projectedValues[index++] = projectedLonLat.z;
}
// Rename original cartesians to WGS84 cartesians.
geometry.attributes[attributeName3D] = attribute;
// Replace original cartesians with 2D projected cartesians
geometry.attributes[attributeName2D] = new GeometryAttribute({
componentDatatype: ComponentDatatype.DOUBLE,
componentsPerAttribute: 3,
values: projectedValues,
});
delete geometry.attributes[attributeName];
return geometry;
};
var encodedResult = {
high: 0.0,
low: 0.0,
};
/**
* Encodes floating-point geometry attribute values as two separate attributes to improve
* rendering precision.
* <p>
* This is commonly used to create high-precision position vertex attributes.
* </p>
*
* @param {Geometry} geometry The geometry to modify.
* @param {String} attributeName The name of the attribute.
* @param {String} attributeHighName The name of the attribute for the encoded high bits.
* @param {String} attributeLowName The name of the attribute for the encoded low bits.
* @returns {Geometry} The modified <code>geometry</code> argument, with its encoded attribute.
*
* @exception {DeveloperError} geometry must have attribute matching the attributeName argument.
* @exception {DeveloperError} The attribute componentDatatype must be ComponentDatatype.DOUBLE.
*
* @example
* geometry = Cesium.GeometryPipeline.encodeAttribute(geometry, 'position3D', 'position3DHigh', 'position3DLow');
*/
GeometryPipeline.encodeAttribute = function (
geometry,
attributeName,
attributeHighName,
attributeLowName
) {
//>>includeStart('debug', pragmas.debug);
if (!defined(geometry)) {
throw new DeveloperError("geometry is required.");
}
if (!defined(attributeName)) {
throw new DeveloperError("attributeName is required.");
}
if (!defined(attributeHighName)) {
throw new DeveloperError("attributeHighName is required.");
}
if (!defined(attributeLowName)) {
throw new DeveloperError("attributeLowName is required.");
}
if (!defined(geometry.attributes[attributeName])) {
throw new DeveloperError(
"geometry must have attribute matching the attributeName argument: " +
attributeName +
"."
);
}
if (
geometry.attributes[attributeName].componentDatatype !==
ComponentDatatype.DOUBLE
) {
throw new DeveloperError(
"The attribute componentDatatype must be ComponentDatatype.DOUBLE."
);
}
//>>includeEnd('debug');
var attribute = geometry.attributes[attributeName];
var values = attribute.values;
var length = values.length;
var highValues = new Float32Array(length);
var lowValues = new Float32Array(length);
for (var i = 0; i < length; ++i) {
EncodedCartesian3.encode(values[i], encodedResult);
highValues[i] = encodedResult.high;
lowValues[i] = encodedResult.low;
}
var componentsPerAttribute = attribute.componentsPerAttribute;
geometry.attributes[attributeHighName] = new GeometryAttribute({
componentDatatype: ComponentDatatype.FLOAT,
componentsPerAttribute: componentsPerAttribute,
values: highValues,
});
geometry.attributes[attributeLowName] = new GeometryAttribute({
componentDatatype: ComponentDatatype.FLOAT,
componentsPerAttribute: componentsPerAttribute,
values: lowValues,
});
delete geometry.attributes[attributeName];
return geometry;
};
var scratchCartesian3 = new Cartesian3();
function transformPoint(matrix, attribute) {
if (defined(attribute)) {
var values = attribute.values;
var length = values.length;
for (var i = 0; i < length; i += 3) {
Cartesian3.unpack(values, i, scratchCartesian3);
Matrix4.multiplyByPoint(matrix, scratchCartesian3, scratchCartesian3);
Cartesian3.pack(scratchCartesian3, values, i);
}
}
}
function transformVector(matrix, attribute) {
if (defined(attribute)) {
var values = attribute.values;
var length = values.length;
for (var i = 0; i < length; i += 3) {
Cartesian3.unpack(values, i, scratchCartesian3);
Matrix3.multiplyByVector(matrix, scratchCartesian3, scratchCartesian3);
scratchCartesian3 = Cartesian3.normalize(
scratchCartesian3,
scratchCartesian3
);
Cartesian3.pack(scratchCartesian3, values, i);
}
}
}
var inverseTranspose = new Matrix4();
var normalMatrix = new Matrix3();
/**
* Transforms a geometry instance to world coordinates. This changes
* the instance's <code>modelMatrix</code> to {@link Matrix4.IDENTITY} and transforms the
* following attributes if they are present: <code>position</code>, <code>normal</code>,
* <code>tangent</code>, and <code>bitangent</code>.
*
* @param {GeometryInstance} instance The geometry instance to modify.
* @returns {GeometryInstance} The modified <code>instance</code> argument, with its attributes transforms to world coordinates.
*
* @example
* Cesium.GeometryPipeline.transformToWorldCoordinates(instance);
*/
GeometryPipeline.transformToWorldCoordinates = function (instance) {
//>>includeStart('debug', pragmas.debug);
if (!defined(instance)) {
throw new DeveloperError("instance is required.");
}
//>>includeEnd('debug');
var modelMatrix = instance.modelMatrix;
if (Matrix4.equals(modelMatrix, Matrix4.IDENTITY)) {
// Already in world coordinates
return instance;
}
var attributes = instance.geometry.attributes;
// Transform attributes in known vertex formats
transformPoint(modelMatrix, attributes.position);
transformPoint(modelMatrix, attributes.prevPosition);
transformPoint(modelMatrix, attributes.nextPosition);
if (
defined(attributes.normal) ||
defined(attributes.tangent) ||
defined(attributes.bitangent)
) {
Matrix4.inverse(modelMatrix, inverseTranspose);
Matrix4.transpose(inverseTranspose, inverseTranspose);
Matrix4.getMatrix3(inverseTranspose, normalMatrix);
transformVector(normalMatrix, attributes.normal);
transformVector(normalMatrix, attributes.tangent);
transformVector(normalMatrix, attributes.bitangent);
}
var boundingSphere = instance.geometry.boundingSphere;
if (defined(boundingSphere)) {
instance.geometry.boundingSphere = BoundingSphere.transform(
boundingSphere,
modelMatrix,
boundingSphere
);
}
instance.modelMatrix = Matrix4.clone(Matrix4.IDENTITY);
return instance;
};
function findAttributesInAllGeometries(instances, propertyName) {
var length = instances.length;
var attributesInAllGeometries = {};
var attributes0 = instances[0][propertyName].attributes;
var name;
for (name in attributes0) {
if (
attributes0.hasOwnProperty(name) &&
defined(attributes0[name]) &&
defined(attributes0[name].values)
) {
var attribute = attributes0[name];
var numberOfComponents = attribute.values.length;
var inAllGeometries = true;
// Does this same attribute exist in all geometries?
for (var i = 1; i < length; ++i) {
var otherAttribute = instances[i][propertyName].attributes[name];
if (
!defined(otherAttribute) ||
attribute.componentDatatype !== otherAttribute.componentDatatype ||
attribute.componentsPerAttribute !==
otherAttribute.componentsPerAttribute ||
attribute.normalize !== otherAttribute.normalize
) {
inAllGeometries = false;
break;
}
numberOfComponents += otherAttribute.values.length;
}
if (inAllGeometries) {
attributesInAllGeometries[name] = new GeometryAttribute({
componentDatatype: attribute.componentDatatype,
componentsPerAttribute: attribute.componentsPerAttribute,
normalize: attribute.normalize,
values: ComponentDatatype.createTypedArray(
attribute.componentDatatype,
numberOfComponents
),
});
}
}
}
return attributesInAllGeometries;
}
var tempScratch = new Cartesian3();
function combineGeometries(instances, propertyName) {
var length = instances.length;
var name;
var i;
var j;
var k;
var m = instances[0].modelMatrix;
var haveIndices = defined(instances[0][propertyName].indices);
var primitiveType = instances[0][propertyName].primitiveType;
//>>includeStart('debug', pragmas.debug);
for (i = 1; i < length; ++i) {
if (!Matrix4.equals(instances[i].modelMatrix, m)) {
throw new DeveloperError("All instances must have the same modelMatrix.");
}
if (defined(instances[i][propertyName].indices) !== haveIndices) {
throw new DeveloperError(
"All instance geometries must have an indices or not have one."
);
}
if (instances[i][propertyName].primitiveType !== primitiveType) {
throw new DeveloperError(
"All instance geometries must have the same primitiveType."
);
}
}
//>>includeEnd('debug');
// Find subset of attributes in all geometries
var attributes = findAttributesInAllGeometries(instances, propertyName);
var values;
var sourceValues;
var sourceValuesLength;
// Combine attributes from each geometry into a single typed array
for (name in attributes) {
if (attributes.hasOwnProperty(name)) {
values = attributes[name].values;
k = 0;
for (i = 0; i < length; ++i) {
sourceValues = instances[i][propertyName].attributes[name].values;
sourceValuesLength = sourceValues.length;
for (j = 0; j < sourceValuesLength; ++j) {
values[k++] = sourceValues[j];
}
}
}
}
// Combine index lists
var indices;
if (haveIndices) {
var numberOfIndices = 0;
for (i = 0; i < length; ++i) {
numberOfIndices += instances[i][propertyName].indices.length;
}
var numberOfVertices = Geometry.computeNumberOfVertices(
new Geometry({
attributes: attributes,
primitiveType: PrimitiveType.POINTS,
})
);
var destIndices = IndexDatatype.createTypedArray(
numberOfVertices,
numberOfIndices
);
var destOffset = 0;
var offset = 0;
for (i = 0; i < length; ++i) {
var sourceIndices = instances[i][propertyName].indices;
var sourceIndicesLen = sourceIndices.length;
for (k = 0; k < sourceIndicesLen; ++k) {
destIndices[destOffset++] = offset + sourceIndices[k];
}
offset += Geometry.computeNumberOfVertices(instances[i][propertyName]);
}
indices = destIndices;
}
// Create bounding sphere that includes all instances
var center = new Cartesian3();
var radius = 0.0;
var bs;
for (i = 0; i < length; ++i) {
bs = instances[i][propertyName].boundingSphere;
if (!defined(bs)) {
// If any geometries have an undefined bounding sphere, then so does the combined geometry
center = undefined;
break;
}
Cartesian3.add(bs.center, center, center);
}
if (defined(center)) {
Cartesian3.divideByScalar(center, length, center);
for (i = 0; i < length; ++i) {
bs = instances[i][propertyName].boundingSphere;
var tempRadius =
Cartesian3.magnitude(
Cartesian3.subtract(bs.center, center, tempScratch)
) + bs.radius;
if (tempRadius > radius) {
radius = tempRadius;
}
}
}
return new Geometry({
attributes: attributes,
indices: indices,
primitiveType: primitiveType,
boundingSphere: defined(center)
? new BoundingSphere(center, radius)
: undefined,
});
}
/**
* Combines geometry from several {@link GeometryInstance} objects into one geometry.
* This concatenates the attributes, concatenates and adjusts the indices, and creates
* a bounding sphere encompassing all instances.
* <p>
* If the instances do not have the same attributes, a subset of attributes common
* to all instances is used, and the others are ignored.
* </p>
* <p>
* This is used by {@link Primitive} to efficiently render a large amount of static data.
* </p>
*
* @private
*
* @param {GeometryInstance[]} [instances] The array of {@link GeometryInstance} objects whose geometry will be combined.
* @returns {Geometry} A single geometry created from the provided geometry instances.
*
* @exception {DeveloperError} All instances must have the same modelMatrix.
* @exception {DeveloperError} All instance geometries must have an indices or not have one.
* @exception {DeveloperError} All instance geometries must have the same primitiveType.
*
*
* @example
* for (var i = 0; i < instances.length; ++i) {
* Cesium.GeometryPipeline.transformToWorldCoordinates(instances[i]);
* }
* var geometries = Cesium.GeometryPipeline.combineInstances(instances);
*
* @see GeometryPipeline.transformToWorldCoordinates
*/
GeometryPipeline.combineInstances = function (instances) {
//>>includeStart('debug', pragmas.debug);
if (!defined(instances) || instances.length < 1) {
throw new DeveloperError(
"instances is required and must have length greater than zero."
);
}
//>>includeEnd('debug');
var instanceGeometry = [];
var instanceSplitGeometry = [];
var length = instances.length;
for (var i = 0; i < length; ++i) {
var instance = instances[i];
if (defined(instance.geometry)) {
instanceGeometry.push(instance);
} else if (
defined(instance.westHemisphereGeometry) &&
defined(instance.eastHemisphereGeometry)
) {
instanceSplitGeometry.push(instance);
}
}
var geometries = [];
if (instanceGeometry.length > 0) {
geometries.push(combineGeometries(instanceGeometry, "geometry"));
}
if (instanceSplitGeometry.length > 0) {
geometries.push(
combineGeometries(instanceSplitGeometry, "westHemisphereGeometry")
);
geometries.push(
combineGeometries(instanceSplitGeometry, "eastHemisphereGeometry")
);
}
return geometries;
};
var normal = new Cartesian3();
var v0 = new Cartesian3();
var v1 = new Cartesian3();
var v2 = new Cartesian3();
/**
* Computes per-vertex normals for a geometry containing <code>TRIANGLES</code> by averaging the normals of
* all triangles incident to the vertex. The result is a new <code>normal</code> attribute added to the geometry.
* This assumes a counter-clockwise winding order.
*
* @param {Geometry} geometry The geometry to modify.
* @returns {Geometry} The modified <code>geometry</code> argument with the computed <code>normal</code> attribute.
*
* @exception {DeveloperError} geometry.indices length must be greater than 0 and be a multiple of 3.
* @exception {DeveloperError} geometry.primitiveType must be {@link PrimitiveType.TRIANGLES}.
*
* @example
* Cesium.GeometryPipeline.computeNormal(geometry);
*/
GeometryPipeline.computeNormal = function (geometry) {
//>>includeStart('debug', pragmas.debug);
if (!defined(geometry)) {
throw new DeveloperError("geometry is required.");
}
if (
!defined(geometry.attributes.position) ||
!defined(geometry.attributes.position.values)
) {
throw new DeveloperError(
"geometry.attributes.position.values is required."
);
}
if (!defined(geometry.indices)) {
throw new DeveloperError("geometry.indices is required.");
}
if (geometry.indices.length < 2 || geometry.indices.length % 3 !== 0) {
throw new DeveloperError(
"geometry.indices length must be greater than 0 and be a multiple of 3."
);
}
if (geometry.primitiveType !== PrimitiveType.TRIANGLES) {
throw new DeveloperError(
"geometry.primitiveType must be PrimitiveType.TRIANGLES."
);
}
//>>includeEnd('debug');
var indices = geometry.indices;
var attributes = geometry.attributes;
var vertices = attributes.position.values;
var numVertices = attributes.position.values.length / 3;
var numIndices = indices.length;
var normalsPerVertex = new Array(numVertices);
var normalsPerTriangle = new Array(numIndices / 3);
var normalIndices = new Array(numIndices);
var i;
for (i = 0; i < numVertices; i++) {
normalsPerVertex[i] = {
indexOffset: 0,
count: 0,
currentCount: 0,
};
}
var j = 0;
for (i = 0; i < numIndices; i += 3) {
var i0 = indices[i];
var i1 = indices[i + 1];
var i2 = indices[i + 2];
var i03 = i0 * 3;
var i13 = i1 * 3;
var i23 = i2 * 3;
v0.x = vertices[i03];
v0.y = vertices[i03 + 1];
v0.z = vertices[i03 + 2];
v1.x = vertices[i13];
v1.y = vertices[i13 + 1];
v1.z = vertices[i13 + 2];
v2.x = vertices[i23];
v2.y = vertices[i23 + 1];
v2.z = vertices[i23 + 2];
normalsPerVertex[i0].count++;
normalsPerVertex[i1].count++;
normalsPerVertex[i2].count++;
Cartesian3.subtract(v1, v0, v1);
Cartesian3.subtract(v2, v0, v2);
normalsPerTriangle[j] = Cartesian3.cross(v1, v2, new Cartesian3());
j++;
}
var indexOffset = 0;
for (i = 0; i < numVertices; i++) {
normalsPerVertex[i].indexOffset += indexOffset;
indexOffset += normalsPerVertex[i].count;
}
j = 0;
var vertexNormalData;
for (i = 0; i < numIndices; i += 3) {
vertexNormalData = normalsPerVertex[indices[i]];
var index = vertexNormalData.indexOffset + vertexNormalData.currentCount;
normalIndices[index] = j;
vertexNormalData.currentCount++;
vertexNormalData = normalsPerVertex[indices[i + 1]];
index = vertexNormalData.indexOffset + vertexNormalData.currentCount;
normalIndices[index] = j;
vertexNormalData.currentCount++;
vertexNormalData = normalsPerVertex[indices[i + 2]];
index = vertexNormalData.indexOffset + vertexNormalData.currentCount;
normalIndices[index] = j;
vertexNormalData.currentCount++;
j++;
}
var normalValues = new Float32Array(numVertices * 3);
for (i = 0; i < numVertices; i++) {
var i3 = i * 3;
vertexNormalData = normalsPerVertex[i];
Cartesian3.clone(Cartesian3.ZERO, normal);
if (vertexNormalData.count > 0) {
for (j = 0; j < vertexNormalData.count; j++) {
Cartesian3.add(
normal,
normalsPerTriangle[normalIndices[vertexNormalData.indexOffset + j]],
normal
);
}
// We can run into an issue where a vertex is used with 2 primitives that have opposite winding order.
if (
Cartesian3.equalsEpsilon(Cartesian3.ZERO, normal, CesiumMath.EPSILON10)
) {
Cartesian3.clone(
normalsPerTriangle[normalIndices[vertexNormalData.indexOffset]],
normal
);
}
}
// We end up with a zero vector probably because of a degenerate triangle
if (
Cartesian3.equalsEpsilon(Cartesian3.ZERO, normal, CesiumMath.EPSILON10)
) {
// Default to (0,0,1)
normal.z = 1.0;
}
Cartesian3.normalize(normal, normal);
normalValues[i3] = normal.x;
normalValues[i3 + 1] = normal.y;
normalValues[i3 + 2] = normal.z;
}
geometry.attributes.normal = new GeometryAttribute({
componentDatatype: ComponentDatatype.FLOAT,
componentsPerAttribute: 3,
values: normalValues,
});
return geometry;
};
var normalScratch = new Cartesian3();
var normalScale = new Cartesian3();
var tScratch = new Cartesian3();
/**
* Computes per-vertex tangents and bitangents for a geometry containing <code>TRIANGLES</code>.
* The result is new <code>tangent</code> and <code>bitangent</code> attributes added to the geometry.
* This assumes a counter-clockwise winding order.
* <p>
* Based on <a href="http://www.terathon.com/code/tangent.html">Computing Tangent Space Basis Vectors
* for an Arbitrary Mesh</a> by Eric Lengyel.
* </p>
*
* @param {Geometry} geometry The geometry to modify.
* @returns {Geometry} The modified <code>geometry</code> argument with the computed <code>tangent</code> and <code>bitangent</code> attributes.
*
* @exception {DeveloperError} geometry.indices length must be greater than 0 and be a multiple of 3.
* @exception {DeveloperError} geometry.primitiveType must be {@link PrimitiveType.TRIANGLES}.
*
* @example
* Cesium.GeometryPipeline.computeTangentAndBiTangent(geometry);
*/
GeometryPipeline.computeTangentAndBitangent = function (geometry) {
//>>includeStart('debug', pragmas.debug);
if (!defined(geometry)) {
throw new DeveloperError("geometry is required.");
}
//>>includeEnd('debug');
var attributes = geometry.attributes;
var indices = geometry.indices;
//>>includeStart('debug', pragmas.debug);
if (!defined(attributes.position) || !defined(attributes.position.values)) {
throw new DeveloperError(
"geometry.attributes.position.values is required."
);
}
if (!defined(attributes.normal) || !defined(attributes.normal.values)) {
throw new DeveloperError("geometry.attributes.normal.values is required.");
}
if (!defined(attributes.st) || !defined(attributes.st.values)) {
throw new DeveloperError("geometry.attributes.st.values is required.");
}
if (!defined(indices)) {
throw new DeveloperError("geometry.indices is required.");
}
if (indices.length < 2 || indices.length % 3 !== 0) {
throw new DeveloperError(
"geometry.indices length must be greater than 0 and be a multiple of 3."
);
}
if (geometry.primitiveType !== PrimitiveType.TRIANGLES) {
throw new DeveloperError(
"geometry.primitiveType must be PrimitiveType.TRIANGLES."
);
}
//>>includeEnd('debug');
var vertices = geometry.attributes.position.values;
var normals = geometry.attributes.normal.values;
var st = geometry.attributes.st.values;
var numVertices = geometry.attributes.position.values.length / 3;
var numIndices = indices.length;
var tan1 = new Array(numVertices * 3);
var i;
for (i = 0; i < tan1.length; i++) {
tan1[i] = 0;
}
var i03;
var i13;
var i23;
for (i = 0; i < numIndices; i += 3) {
var i0 = indices[i];
var i1 = indices[i + 1];
var i2 = indices[i + 2];
i03 = i0 * 3;
i13 = i1 * 3;
i23 = i2 * 3;
var i02 = i0 * 2;
var i12 = i1 * 2;
var i22 = i2 * 2;
var ux = vertices[i03];
var uy = vertices[i03 + 1];
var uz = vertices[i03 + 2];
var wx = st[i02];
var wy = st[i02 + 1];
var t1 = st[i12 + 1] - wy;
var t2 = st[i22 + 1] - wy;
var r = 1.0 / ((st[i12] - wx) * t2 - (st[i22] - wx) * t1);
var sdirx = (t2 * (vertices[i13] - ux) - t1 * (vertices[i23] - ux)) * r;
var sdiry =
(t2 * (vertices[i13 + 1] - uy) - t1 * (vertices[i23 + 1] - uy)) * r;
var sdirz =
(t2 * (vertices[i13 + 2] - uz) - t1 * (vertices[i23 + 2] - uz)) * r;
tan1[i03] += sdirx;
tan1[i03 + 1] += sdiry;
tan1[i03 + 2] += sdirz;
tan1[i13] += sdirx;
tan1[i13 + 1] += sdiry;
tan1[i13 + 2] += sdirz;
tan1[i23] += sdirx;
tan1[i23 + 1] += sdiry;
tan1[i23 + 2] += sdirz;
}
var tangentValues = new Float32Array(numVertices * 3);
var bitangentValues = new Float32Array(numVertices * 3);
for (i = 0; i < numVertices; i++) {
i03 = i * 3;
i13 = i03 + 1;
i23 = i03 + 2;
var n = Cartesian3.fromArray(normals, i03, normalScratch);
var t = Cartesian3.fromArray(tan1, i03, tScratch);
var scalar = Cartesian3.dot(n, t);
Cartesian3.multiplyByScalar(n, scalar, normalScale);
Cartesian3.normalize(Cartesian3.subtract(t, normalScale, t), t);
tangentValues[i03] = t.x;
tangentValues[i13] = t.y;
tangentValues[i23] = t.z;
Cartesian3.normalize(Cartesian3.cross(n, t, t), t);
bitangentValues[i03] = t.x;
bitangentValues[i13] = t.y;
bitangentValues[i23] = t.z;
}
geometry.attributes.tangent = new GeometryAttribute({
componentDatatype: ComponentDatatype.FLOAT,
componentsPerAttribute: 3,
values: tangentValues,
});
geometry.attributes.bitangent = new GeometryAttribute({
componentDatatype: ComponentDatatype.FLOAT,
componentsPerAttribute: 3,
values: bitangentValues,
});
return geometry;
};
var scratchCartesian2 = new Cartesian2();
var toEncode1 = new Cartesian3();
var toEncode2 = new Cartesian3();
var toEncode3 = new Cartesian3();
var encodeResult2 = new Cartesian2();
/**
* Compresses and packs geometry normal attribute values to save memory.
*
* @param {Geometry} geometry The geometry to modify.
* @returns {Geometry} The modified <code>geometry</code> argument, with its normals compressed and packed.
*
* @example
* geometry = Cesium.GeometryPipeline.compressVertices(geometry);
*/
GeometryPipeline.compressVertices = function (geometry) {
//>>includeStart('debug', pragmas.debug);
if (!defined(geometry)) {
throw new DeveloperError("geometry is required.");
}
//>>includeEnd('debug');
var extrudeAttribute = geometry.attributes.extrudeDirection;
var i;
var numVertices;
if (defined(extrudeAttribute)) {
//only shadow volumes use extrudeDirection, and shadow volumes use vertexFormat: POSITION_ONLY so we don't need to check other attributes
var extrudeDirections = extrudeAttribute.values;
numVertices = extrudeDirections.length / 3.0;
var compressedDirections = new Float32Array(numVertices * 2);
var i2 = 0;
for (i = 0; i < numVertices; ++i) {
Cartesian3.fromArray(extrudeDirections, i * 3.0, toEncode1);
if (Cartesian3.equals(toEncode1, Cartesian3.ZERO)) {
i2 += 2;
continue;
}
encodeResult2 = AttributeCompression.octEncodeInRange(
toEncode1,
65535,
encodeResult2
);
compressedDirections[i2++] = encodeResult2.x;
compressedDirections[i2++] = encodeResult2.y;
}
geometry.attributes.compressedAttributes = new GeometryAttribute({
componentDatatype: ComponentDatatype.FLOAT,
componentsPerAttribute: 2,
values: compressedDirections,
});
delete geometry.attributes.extrudeDirection;
return geometry;
}
var normalAttribute = geometry.attributes.normal;
var stAttribute = geometry.attributes.st;
var hasNormal = defined(normalAttribute);
var hasSt = defined(stAttribute);
if (!hasNormal && !hasSt) {
return geometry;
}
var tangentAttribute = geometry.attributes.tangent;
var bitangentAttribute = geometry.attributes.bitangent;
var hasTangent = defined(tangentAttribute);
var hasBitangent = defined(bitangentAttribute);
var normals;
var st;
var tangents;
var bitangents;
if (hasNormal) {
normals = normalAttribute.values;
}
if (hasSt) {
st = stAttribute.values;
}
if (hasTangent) {
tangents = tangentAttribute.values;
}
if (hasBitangent) {
bitangents = bitangentAttribute.values;
}
var length = hasNormal ? normals.length : st.length;
var numComponents = hasNormal ? 3.0 : 2.0;
numVertices = length / numComponents;
var compressedLength = numVertices;
var numCompressedComponents = hasSt && hasNormal ? 2.0 : 1.0;
numCompressedComponents += hasTangent || hasBitangent ? 1.0 : 0.0;
compressedLength *= numCompressedComponents;
var compressedAttributes = new Float32Array(compressedLength);
var normalIndex = 0;
for (i = 0; i < numVertices; ++i) {
if (hasSt) {
Cartesian2.fromArray(st, i * 2.0, scratchCartesian2);
compressedAttributes[
normalIndex++
] = AttributeCompression.compressTextureCoordinates(scratchCartesian2);
}
var index = i * 3.0;
if (hasNormal && defined(tangents) && defined(bitangents)) {
Cartesian3.fromArray(normals, index, toEncode1);
Cartesian3.fromArray(tangents, index, toEncode2);
Cartesian3.fromArray(bitangents, index, toEncode3);
AttributeCompression.octPack(
toEncode1,
toEncode2,
toEncode3,
scratchCartesian2
);
compressedAttributes[normalIndex++] = scratchCartesian2.x;
compressedAttributes[normalIndex++] = scratchCartesian2.y;
} else {
if (hasNormal) {
Cartesian3.fromArray(normals, index, toEncode1);
compressedAttributes[
normalIndex++
] = AttributeCompression.octEncodeFloa