cesium
Version:
CesiumJS is a JavaScript library for creating 3D globes and 2D maps in a web browser without a plugin.
1,182 lines (1,065 loc) • 60.6 kB
JavaScript
/* This file is automatically rebuilt by the Cesium build process. */
define(['exports', './when-e6e3e713', './Check-1df6b9a0', './Cartesian2-1d7364fa', './Transforms-943e8463', './WebGLConstants-7f7d68ac'], function (exports, when, Check, Cartesian2, Transforms, WebGLConstants) { 'use strict';
/**
* @private
*/
var GeometryType = {
NONE : 0,
TRIANGLES : 1,
LINES : 2,
POLYLINES : 3
};
var GeometryType$1 = Object.freeze(GeometryType);
/**
* A 2x2 matrix, indexable as a column-major order array.
* Constructor parameters are in row-major order for code readability.
* @alias Matrix2
* @constructor
*
* @param {Number} [column0Row0=0.0] The value for column 0, row 0.
* @param {Number} [column1Row0=0.0] The value for column 1, row 0.
* @param {Number} [column0Row1=0.0] The value for column 0, row 1.
* @param {Number} [column1Row1=0.0] The value for column 1, row 1.
*
* @see Matrix2.fromColumnMajorArray
* @see Matrix2.fromRowMajorArray
* @see Matrix2.fromScale
* @see Matrix2.fromUniformScale
* @see Matrix3
* @see Matrix4
*/
function Matrix2(column0Row0, column1Row0, column0Row1, column1Row1) {
this[0] = when.defaultValue(column0Row0, 0.0);
this[1] = when.defaultValue(column0Row1, 0.0);
this[2] = when.defaultValue(column1Row0, 0.0);
this[3] = when.defaultValue(column1Row1, 0.0);
}
/**
* The number of elements used to pack the object into an array.
* @type {Number}
*/
Matrix2.packedLength = 4;
/**
* Stores the provided instance into the provided array.
*
* @param {Matrix2} value The value to pack.
* @param {Number[]} array The array to pack into.
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {Number[]} The array that was packed into
*/
Matrix2.pack = function(value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('value', value);
Check.Check.defined('array', array);
//>>includeEnd('debug');
startingIndex = when.defaultValue(startingIndex, 0);
array[startingIndex++] = value[0];
array[startingIndex++] = value[1];
array[startingIndex++] = value[2];
array[startingIndex++] = value[3];
return array;
};
/**
* Retrieves an instance from a packed array.
*
* @param {Number[]} array The packed array.
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {Matrix2} [result] The object into which to store the result.
* @returns {Matrix2} The modified result parameter or a new Matrix2 instance if one was not provided.
*/
Matrix2.unpack = function(array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.defined('array', array);
//>>includeEnd('debug');
startingIndex = when.defaultValue(startingIndex, 0);
if (!when.defined(result)) {
result = new Matrix2();
}
result[0] = array[startingIndex++];
result[1] = array[startingIndex++];
result[2] = array[startingIndex++];
result[3] = array[startingIndex++];
return result;
};
/**
* Duplicates a Matrix2 instance.
*
* @param {Matrix2} matrix The matrix to duplicate.
* @param {Matrix2} [result] The object onto which to store the result.
* @returns {Matrix2} The modified result parameter or a new Matrix2 instance if one was not provided. (Returns undefined if matrix is undefined)
*/
Matrix2.clone = function(matrix, result) {
if (!when.defined(matrix)) {
return undefined;
}
if (!when.defined(result)) {
return new Matrix2(matrix[0], matrix[2],
matrix[1], matrix[3]);
}
result[0] = matrix[0];
result[1] = matrix[1];
result[2] = matrix[2];
result[3] = matrix[3];
return result;
};
/**
* Creates a Matrix2 from 4 consecutive elements in an array.
*
* @param {Number[]} array The array whose 4 consecutive elements correspond to the positions of the matrix. Assumes column-major order.
* @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to first column first row position in the matrix.
* @param {Matrix2} [result] The object onto which to store the result.
* @returns {Matrix2} The modified result parameter or a new Matrix2 instance if one was not provided.
*
* @example
* // Create the Matrix2:
* // [1.0, 2.0]
* // [1.0, 2.0]
*
* var v = [1.0, 1.0, 2.0, 2.0];
* var m = Cesium.Matrix2.fromArray(v);
*
* // Create same Matrix2 with using an offset into an array
* var v2 = [0.0, 0.0, 1.0, 1.0, 2.0, 2.0];
* var m2 = Cesium.Matrix2.fromArray(v2, 2);
*/
Matrix2.fromArray = function(array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.defined('array', array);
//>>includeEnd('debug');
startingIndex = when.defaultValue(startingIndex, 0);
if (!when.defined(result)) {
result = new Matrix2();
}
result[0] = array[startingIndex];
result[1] = array[startingIndex + 1];
result[2] = array[startingIndex + 2];
result[3] = array[startingIndex + 3];
return result;
};
/**
* Creates a Matrix2 instance from a column-major order array.
*
* @param {Number[]} values The column-major order array.
* @param {Matrix2} [result] The object in which the result will be stored, if undefined a new instance will be created.
* @returns {Matrix2} The modified result parameter, or a new Matrix2 instance if one was not provided.
*/
Matrix2.fromColumnMajorArray = function(values, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.defined('values', values);
//>>includeEnd('debug');
return Matrix2.clone(values, result);
};
/**
* Creates a Matrix2 instance from a row-major order array.
* The resulting matrix will be in column-major order.
*
* @param {Number[]} values The row-major order array.
* @param {Matrix2} [result] The object in which the result will be stored, if undefined a new instance will be created.
* @returns {Matrix2} The modified result parameter, or a new Matrix2 instance if one was not provided.
*/
Matrix2.fromRowMajorArray = function(values, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.defined('values', values);
//>>includeEnd('debug');
if (!when.defined(result)) {
return new Matrix2(values[0], values[1],
values[2], values[3]);
}
result[0] = values[0];
result[1] = values[2];
result[2] = values[1];
result[3] = values[3];
return result;
};
/**
* Computes a Matrix2 instance representing a non-uniform scale.
*
* @param {Cartesian2} scale The x and y scale factors.
* @param {Matrix2} [result] The object in which the result will be stored, if undefined a new instance will be created.
* @returns {Matrix2} The modified result parameter, or a new Matrix2 instance if one was not provided.
*
* @example
* // Creates
* // [7.0, 0.0]
* // [0.0, 8.0]
* var m = Cesium.Matrix2.fromScale(new Cesium.Cartesian2(7.0, 8.0));
*/
Matrix2.fromScale = function(scale, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('scale', scale);
//>>includeEnd('debug');
if (!when.defined(result)) {
return new Matrix2(
scale.x, 0.0,
0.0, scale.y);
}
result[0] = scale.x;
result[1] = 0.0;
result[2] = 0.0;
result[3] = scale.y;
return result;
};
/**
* Computes a Matrix2 instance representing a uniform scale.
*
* @param {Number} scale The uniform scale factor.
* @param {Matrix2} [result] The object in which the result will be stored, if undefined a new instance will be created.
* @returns {Matrix2} The modified result parameter, or a new Matrix2 instance if one was not provided.
*
* @example
* // Creates
* // [2.0, 0.0]
* // [0.0, 2.0]
* var m = Cesium.Matrix2.fromUniformScale(2.0);
*/
Matrix2.fromUniformScale = function(scale, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.number('scale', scale);
//>>includeEnd('debug');
if (!when.defined(result)) {
return new Matrix2(
scale, 0.0,
0.0, scale);
}
result[0] = scale;
result[1] = 0.0;
result[2] = 0.0;
result[3] = scale;
return result;
};
/**
* Creates a rotation matrix.
*
* @param {Number} angle The angle, in radians, of the rotation. Positive angles are counterclockwise.
* @param {Matrix2} [result] The object in which the result will be stored, if undefined a new instance will be created.
* @returns {Matrix2} The modified result parameter, or a new Matrix2 instance if one was not provided.
*
* @example
* // Rotate a point 45 degrees counterclockwise.
* var p = new Cesium.Cartesian2(5, 6);
* var m = Cesium.Matrix2.fromRotation(Cesium.Math.toRadians(45.0));
* var rotated = Cesium.Matrix2.multiplyByVector(m, p, new Cesium.Cartesian2());
*/
Matrix2.fromRotation = function(angle, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.number('angle', angle);
//>>includeEnd('debug');
var cosAngle = Math.cos(angle);
var sinAngle = Math.sin(angle);
if (!when.defined(result)) {
return new Matrix2(
cosAngle, -sinAngle,
sinAngle, cosAngle);
}
result[0] = cosAngle;
result[1] = sinAngle;
result[2] = -sinAngle;
result[3] = cosAngle;
return result;
};
/**
* Creates an Array from the provided Matrix2 instance.
* The array will be in column-major order.
*
* @param {Matrix2} matrix The matrix to use..
* @param {Number[]} [result] The Array onto which to store the result.
* @returns {Number[]} The modified Array parameter or a new Array instance if one was not provided.
*/
Matrix2.toArray = function(matrix, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
//>>includeEnd('debug');
if (!when.defined(result)) {
return [matrix[0], matrix[1], matrix[2], matrix[3]];
}
result[0] = matrix[0];
result[1] = matrix[1];
result[2] = matrix[2];
result[3] = matrix[3];
return result;
};
/**
* Computes the array index of the element at the provided row and column.
*
* @param {Number} row The zero-based index of the row.
* @param {Number} column The zero-based index of the column.
* @returns {Number} The index of the element at the provided row and column.
*
* @exception {DeveloperError} row must be 0 or 1.
* @exception {DeveloperError} column must be 0 or 1.
*
* @example
* var myMatrix = new Cesium.Matrix2();
* var column1Row0Index = Cesium.Matrix2.getElementIndex(1, 0);
* var column1Row0 = myMatrix[column1Row0Index]
* myMatrix[column1Row0Index] = 10.0;
*/
Matrix2.getElementIndex = function(column, row) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.number.greaterThanOrEquals('row', row, 0);
Check.Check.typeOf.number.lessThanOrEquals('row', row, 1);
Check.Check.typeOf.number.greaterThanOrEquals('column', column, 0);
Check.Check.typeOf.number.lessThanOrEquals('column', column, 1);
//>>includeEnd('debug');
return column * 2 + row;
};
/**
* Retrieves a copy of the matrix column at the provided index as a Cartesian2 instance.
*
* @param {Matrix2} matrix The matrix to use.
* @param {Number} index The zero-based index of the column to retrieve.
* @param {Cartesian2} result The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter.
*
* @exception {DeveloperError} index must be 0 or 1.
*/
Matrix2.getColumn = function(matrix, index, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
Check.Check.typeOf.number.greaterThanOrEquals('index', index, 0);
Check.Check.typeOf.number.lessThanOrEquals('index', index, 1);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
var startIndex = index * 2;
var x = matrix[startIndex];
var y = matrix[startIndex + 1];
result.x = x;
result.y = y;
return result;
};
/**
* Computes a new matrix that replaces the specified column in the provided matrix with the provided Cartesian2 instance.
*
* @param {Matrix2} matrix The matrix to use.
* @param {Number} index The zero-based index of the column to set.
* @param {Cartesian2} cartesian The Cartesian whose values will be assigned to the specified column.
* @param {Cartesian2} result The object onto which to store the result.
* @returns {Matrix2} The modified result parameter.
*
* @exception {DeveloperError} index must be 0 or 1.
*/
Matrix2.setColumn = function(matrix, index, cartesian, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
Check.Check.typeOf.number.greaterThanOrEquals('index', index, 0);
Check.Check.typeOf.number.lessThanOrEquals('index', index, 1);
Check.Check.typeOf.object('cartesian', cartesian);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result = Matrix2.clone(matrix, result);
var startIndex = index * 2;
result[startIndex] = cartesian.x;
result[startIndex + 1] = cartesian.y;
return result;
};
/**
* Retrieves a copy of the matrix row at the provided index as a Cartesian2 instance.
*
* @param {Matrix2} matrix The matrix to use.
* @param {Number} index The zero-based index of the row to retrieve.
* @param {Cartesian2} result The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter.
*
* @exception {DeveloperError} index must be 0 or 1.
*/
Matrix2.getRow = function(matrix, index, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
Check.Check.typeOf.number.greaterThanOrEquals('index', index, 0);
Check.Check.typeOf.number.lessThanOrEquals('index', index, 1);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
var x = matrix[index];
var y = matrix[index + 2];
result.x = x;
result.y = y;
return result;
};
/**
* Computes a new matrix that replaces the specified row in the provided matrix with the provided Cartesian2 instance.
*
* @param {Matrix2} matrix The matrix to use.
* @param {Number} index The zero-based index of the row to set.
* @param {Cartesian2} cartesian The Cartesian whose values will be assigned to the specified row.
* @param {Matrix2} result The object onto which to store the result.
* @returns {Matrix2} The modified result parameter.
*
* @exception {DeveloperError} index must be 0 or 1.
*/
Matrix2.setRow = function(matrix, index, cartesian, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
Check.Check.typeOf.number.greaterThanOrEquals('index', index, 0);
Check.Check.typeOf.number.lessThanOrEquals('index', index, 1);
Check.Check.typeOf.object('cartesian', cartesian);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result = Matrix2.clone(matrix, result);
result[index] = cartesian.x;
result[index + 2] = cartesian.y;
return result;
};
var scratchColumn = new Cartesian2.Cartesian2();
/**
* Extracts the non-uniform scale assuming the matrix is an affine transformation.
*
* @param {Matrix2} matrix The matrix.
* @param {Cartesian2} result The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter.
*/
Matrix2.getScale = function(matrix, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result.x = Cartesian2.Cartesian2.magnitude(Cartesian2.Cartesian2.fromElements(matrix[0], matrix[1], scratchColumn));
result.y = Cartesian2.Cartesian2.magnitude(Cartesian2.Cartesian2.fromElements(matrix[2], matrix[3], scratchColumn));
return result;
};
var scratchScale = new Cartesian2.Cartesian2();
/**
* Computes the maximum scale assuming the matrix is an affine transformation.
* The maximum scale is the maximum length of the column vectors.
*
* @param {Matrix2} matrix The matrix.
* @returns {Number} The maximum scale.
*/
Matrix2.getMaximumScale = function(matrix) {
Matrix2.getScale(matrix, scratchScale);
return Cartesian2.Cartesian2.maximumComponent(scratchScale);
};
/**
* Computes the product of two matrices.
*
* @param {Matrix2} left The first matrix.
* @param {Matrix2} right The second matrix.
* @param {Matrix2} result The object onto which to store the result.
* @returns {Matrix2} The modified result parameter.
*/
Matrix2.multiply = function(left, right, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('left', left);
Check.Check.typeOf.object('right', right);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
var column0Row0 = left[0] * right[0] + left[2] * right[1];
var column1Row0 = left[0] * right[2] + left[2] * right[3];
var column0Row1 = left[1] * right[0] + left[3] * right[1];
var column1Row1 = left[1] * right[2] + left[3] * right[3];
result[0] = column0Row0;
result[1] = column0Row1;
result[2] = column1Row0;
result[3] = column1Row1;
return result;
};
/**
* Computes the sum of two matrices.
*
* @param {Matrix2} left The first matrix.
* @param {Matrix2} right The second matrix.
* @param {Matrix2} result The object onto which to store the result.
* @returns {Matrix2} The modified result parameter.
*/
Matrix2.add = function(left, right, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('left', left);
Check.Check.typeOf.object('right', right);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result[0] = left[0] + right[0];
result[1] = left[1] + right[1];
result[2] = left[2] + right[2];
result[3] = left[3] + right[3];
return result;
};
/**
* Computes the difference of two matrices.
*
* @param {Matrix2} left The first matrix.
* @param {Matrix2} right The second matrix.
* @param {Matrix2} result The object onto which to store the result.
* @returns {Matrix2} The modified result parameter.
*/
Matrix2.subtract = function(left, right, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('left', left);
Check.Check.typeOf.object('right', right);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result[0] = left[0] - right[0];
result[1] = left[1] - right[1];
result[2] = left[2] - right[2];
result[3] = left[3] - right[3];
return result;
};
/**
* Computes the product of a matrix and a column vector.
*
* @param {Matrix2} matrix The matrix.
* @param {Cartesian2} cartesian The column.
* @param {Cartesian2} result The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter.
*/
Matrix2.multiplyByVector = function(matrix, cartesian, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
Check.Check.typeOf.object('cartesian', cartesian);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
var x = matrix[0] * cartesian.x + matrix[2] * cartesian.y;
var y = matrix[1] * cartesian.x + matrix[3] * cartesian.y;
result.x = x;
result.y = y;
return result;
};
/**
* Computes the product of a matrix and a scalar.
*
* @param {Matrix2} matrix The matrix.
* @param {Number} scalar The number to multiply by.
* @param {Matrix2} result The object onto which to store the result.
* @returns {Matrix2} The modified result parameter.
*/
Matrix2.multiplyByScalar = function(matrix, scalar, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
Check.Check.typeOf.number('scalar', scalar);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result[0] = matrix[0] * scalar;
result[1] = matrix[1] * scalar;
result[2] = matrix[2] * scalar;
result[3] = matrix[3] * scalar;
return result;
};
/**
* Computes the product of a matrix times a (non-uniform) scale, as if the scale were a scale matrix.
*
* @param {Matrix2} matrix The matrix on the left-hand side.
* @param {Cartesian2} scale The non-uniform scale on the right-hand side.
* @param {Matrix2} result The object onto which to store the result.
* @returns {Matrix2} The modified result parameter.
*
*
* @example
* // Instead of Cesium.Matrix2.multiply(m, Cesium.Matrix2.fromScale(scale), m);
* Cesium.Matrix2.multiplyByScale(m, scale, m);
*
* @see Matrix2.fromScale
* @see Matrix2.multiplyByUniformScale
*/
Matrix2.multiplyByScale = function(matrix, scale, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
Check.Check.typeOf.object('scale', scale);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result[0] = matrix[0] * scale.x;
result[1] = matrix[1] * scale.x;
result[2] = matrix[2] * scale.y;
result[3] = matrix[3] * scale.y;
return result;
};
/**
* Creates a negated copy of the provided matrix.
*
* @param {Matrix2} matrix The matrix to negate.
* @param {Matrix2} result The object onto which to store the result.
* @returns {Matrix2} The modified result parameter.
*/
Matrix2.negate = function(matrix, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result[0] = -matrix[0];
result[1] = -matrix[1];
result[2] = -matrix[2];
result[3] = -matrix[3];
return result;
};
/**
* Computes the transpose of the provided matrix.
*
* @param {Matrix2} matrix The matrix to transpose.
* @param {Matrix2} result The object onto which to store the result.
* @returns {Matrix2} The modified result parameter.
*/
Matrix2.transpose = function(matrix, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
var column0Row0 = matrix[0];
var column0Row1 = matrix[2];
var column1Row0 = matrix[1];
var column1Row1 = matrix[3];
result[0] = column0Row0;
result[1] = column0Row1;
result[2] = column1Row0;
result[3] = column1Row1;
return result;
};
/**
* Computes a matrix, which contains the absolute (unsigned) values of the provided matrix's elements.
*
* @param {Matrix2} matrix The matrix with signed elements.
* @param {Matrix2} result The object onto which to store the result.
* @returns {Matrix2} The modified result parameter.
*/
Matrix2.abs = function(matrix, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result[0] = Math.abs(matrix[0]);
result[1] = Math.abs(matrix[1]);
result[2] = Math.abs(matrix[2]);
result[3] = Math.abs(matrix[3]);
return result;
};
/**
* Compares the provided matrices componentwise and returns
* <code>true</code> if they are equal, <code>false</code> otherwise.
*
* @param {Matrix2} [left] The first matrix.
* @param {Matrix2} [right] The second matrix.
* @returns {Boolean} <code>true</code> if left and right are equal, <code>false</code> otherwise.
*/
Matrix2.equals = function(left, right) {
return (left === right) ||
(when.defined(left) &&
when.defined(right) &&
left[0] === right[0] &&
left[1] === right[1] &&
left[2] === right[2] &&
left[3] === right[3]);
};
/**
* @private
*/
Matrix2.equalsArray = function(matrix, array, offset) {
return matrix[0] === array[offset] &&
matrix[1] === array[offset + 1] &&
matrix[2] === array[offset + 2] &&
matrix[3] === array[offset + 3];
};
/**
* Compares the provided matrices componentwise and returns
* <code>true</code> if they are within the provided epsilon,
* <code>false</code> otherwise.
*
* @param {Matrix2} [left] The first matrix.
* @param {Matrix2} [right] The second matrix.
* @param {Number} epsilon The epsilon to use for equality testing.
* @returns {Boolean} <code>true</code> if left and right are within the provided epsilon, <code>false</code> otherwise.
*/
Matrix2.equalsEpsilon = function(left, right, epsilon) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.number('epsilon', epsilon);
//>>includeEnd('debug');
return (left === right) ||
(when.defined(left) &&
when.defined(right) &&
Math.abs(left[0] - right[0]) <= epsilon &&
Math.abs(left[1] - right[1]) <= epsilon &&
Math.abs(left[2] - right[2]) <= epsilon &&
Math.abs(left[3] - right[3]) <= epsilon);
};
/**
* An immutable Matrix2 instance initialized to the identity matrix.
*
* @type {Matrix2}
* @constant
*/
Matrix2.IDENTITY = Object.freeze(new Matrix2(1.0, 0.0,
0.0, 1.0));
/**
* An immutable Matrix2 instance initialized to the zero matrix.
*
* @type {Matrix2}
* @constant
*/
Matrix2.ZERO = Object.freeze(new Matrix2(0.0, 0.0,
0.0, 0.0));
/**
* The index into Matrix2 for column 0, row 0.
*
* @type {Number}
* @constant
*
* @example
* var matrix = new Cesium.Matrix2();
* matrix[Cesium.Matrix2.COLUMN0ROW0] = 5.0; // set column 0, row 0 to 5.0
*/
Matrix2.COLUMN0ROW0 = 0;
/**
* The index into Matrix2 for column 0, row 1.
*
* @type {Number}
* @constant
*
* @example
* var matrix = new Cesium.Matrix2();
* matrix[Cesium.Matrix2.COLUMN0ROW1] = 5.0; // set column 0, row 1 to 5.0
*/
Matrix2.COLUMN0ROW1 = 1;
/**
* The index into Matrix2 for column 1, row 0.
*
* @type {Number}
* @constant
*
* @example
* var matrix = new Cesium.Matrix2();
* matrix[Cesium.Matrix2.COLUMN1ROW0] = 5.0; // set column 1, row 0 to 5.0
*/
Matrix2.COLUMN1ROW0 = 2;
/**
* The index into Matrix2 for column 1, row 1.
*
* @type {Number}
* @constant
*
* @example
* var matrix = new Cesium.Matrix2();
* matrix[Cesium.Matrix2.COLUMN1ROW1] = 5.0; // set column 1, row 1 to 5.0
*/
Matrix2.COLUMN1ROW1 = 3;
Object.defineProperties(Matrix2.prototype, {
/**
* Gets the number of items in the collection.
* @memberof Matrix2.prototype
*
* @type {Number}
*/
length : {
get : function() {
return Matrix2.packedLength;
}
}
});
/**
* Duplicates the provided Matrix2 instance.
*
* @param {Matrix2} [result] The object onto which to store the result.
* @returns {Matrix2} The modified result parameter or a new Matrix2 instance if one was not provided.
*/
Matrix2.prototype.clone = function(result) {
return Matrix2.clone(this, result);
};
/**
* Compares this matrix to the provided matrix componentwise and returns
* <code>true</code> if they are equal, <code>false</code> otherwise.
*
* @param {Matrix2} [right] The right hand side matrix.
* @returns {Boolean} <code>true</code> if they are equal, <code>false</code> otherwise.
*/
Matrix2.prototype.equals = function(right) {
return Matrix2.equals(this, right);
};
/**
* Compares this matrix to the provided matrix componentwise and returns
* <code>true</code> if they are within the provided epsilon,
* <code>false</code> otherwise.
*
* @param {Matrix2} [right] The right hand side matrix.
* @param {Number} epsilon The epsilon to use for equality testing.
* @returns {Boolean} <code>true</code> if they are within the provided epsilon, <code>false</code> otherwise.
*/
Matrix2.prototype.equalsEpsilon = function(right, epsilon) {
return Matrix2.equalsEpsilon(this, right, epsilon);
};
/**
* Creates a string representing this Matrix with each row being
* on a separate line and in the format '(column0, column1)'.
*
* @returns {String} A string representing the provided Matrix with each row being on a separate line and in the format '(column0, column1)'.
*/
Matrix2.prototype.toString = function() {
return '(' + this[0] + ', ' + this[2] + ')\n' +
'(' + this[1] + ', ' + this[3] + ')';
};
/**
* The type of a geometric primitive, i.e., points, lines, and triangles.
*
* @exports PrimitiveType
*/
var PrimitiveType = {
/**
* Points primitive where each vertex (or index) is a separate point.
*
* @type {Number}
* @constant
*/
POINTS : WebGLConstants.WebGLConstants.POINTS,
/**
* Lines primitive where each two vertices (or indices) is a line segment. Line segments are not necessarily connected.
*
* @type {Number}
* @constant
*/
LINES : WebGLConstants.WebGLConstants.LINES,
/**
* Line loop primitive where each vertex (or index) after the first connects a line to
* the previous vertex, and the last vertex implicitly connects to the first.
*
* @type {Number}
* @constant
*/
LINE_LOOP : WebGLConstants.WebGLConstants.LINE_LOOP,
/**
* Line strip primitive where each vertex (or index) after the first connects a line to the previous vertex.
*
* @type {Number}
* @constant
*/
LINE_STRIP : WebGLConstants.WebGLConstants.LINE_STRIP,
/**
* Triangles primitive where each three vertices (or indices) is a triangle. Triangles do not necessarily share edges.
*
* @type {Number}
* @constant
*/
TRIANGLES : WebGLConstants.WebGLConstants.TRIANGLES,
/**
* Triangle strip primitive where each vertex (or index) after the first two connect to
* the previous two vertices forming a triangle. For example, this can be used to model a wall.
*
* @type {Number}
* @constant
*/
TRIANGLE_STRIP : WebGLConstants.WebGLConstants.TRIANGLE_STRIP,
/**
* Triangle fan primitive where each vertex (or index) after the first two connect to
* the previous vertex and the first vertex forming a triangle. For example, this can be used
* to model a cone or circle.
*
* @type {Number}
* @constant
*/
TRIANGLE_FAN : WebGLConstants.WebGLConstants.TRIANGLE_FAN,
/**
* @private
*/
validate : function(primitiveType) {
return primitiveType === PrimitiveType.POINTS ||
primitiveType === PrimitiveType.LINES ||
primitiveType === PrimitiveType.LINE_LOOP ||
primitiveType === PrimitiveType.LINE_STRIP ||
primitiveType === PrimitiveType.TRIANGLES ||
primitiveType === PrimitiveType.TRIANGLE_STRIP ||
primitiveType === PrimitiveType.TRIANGLE_FAN;
}
};
var PrimitiveType$1 = Object.freeze(PrimitiveType);
/**
* A geometry representation with attributes forming vertices and optional index data
* defining primitives. Geometries and an {@link Appearance}, which describes the shading,
* can be assigned to a {@link Primitive} for visualization. A <code>Primitive</code> can
* be created from many heterogeneous - in many cases - geometries for performance.
* <p>
* Geometries can be transformed and optimized using functions in {@link GeometryPipeline}.
* </p>
*
* @alias Geometry
* @constructor
*
* @param {Object} options Object with the following properties:
* @param {GeometryAttributes} options.attributes Attributes, which make up the geometry's vertices.
* @param {PrimitiveType} [options.primitiveType=PrimitiveType.TRIANGLES] The type of primitives in the geometry.
* @param {Uint16Array|Uint32Array} [options.indices] Optional index data that determines the primitives in the geometry.
* @param {BoundingSphere} [options.boundingSphere] An optional bounding sphere that fully enclosed the geometry.
*
* @see PolygonGeometry
* @see RectangleGeometry
* @see EllipseGeometry
* @see CircleGeometry
* @see WallGeometry
* @see SimplePolylineGeometry
* @see BoxGeometry
* @see EllipsoidGeometry
*
* @demo {@link https://sandcastle.cesium.com/index.html?src=Geometry%20and%20Appearances.html|Geometry and Appearances Demo}
*
* @example
* // Create geometry with a position attribute and indexed lines.
* var positions = new Float64Array([
* 0.0, 0.0, 0.0,
* 7500000.0, 0.0, 0.0,
* 0.0, 7500000.0, 0.0
* ]);
*
* var geometry = new Cesium.Geometry({
* attributes : {
* position : new Cesium.GeometryAttribute({
* componentDatatype : Cesium.ComponentDatatype.DOUBLE,
* componentsPerAttribute : 3,
* values : positions
* })
* },
* indices : new Uint16Array([0, 1, 1, 2, 2, 0]),
* primitiveType : Cesium.PrimitiveType.LINES,
* boundingSphere : Cesium.BoundingSphere.fromVertices(positions)
* });
*/
function Geometry(options) {
options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT);
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('options.attributes', options.attributes);
//>>includeEnd('debug');
/**
* Attributes, which make up the geometry's vertices. Each property in this object corresponds to a
* {@link GeometryAttribute} containing the attribute's data.
* <p>
* Attributes are always stored non-interleaved in a Geometry.
* </p>
* <p>
* There are reserved attribute names with well-known semantics. The following attributes
* are created by a Geometry (depending on the provided {@link VertexFormat}.
* <ul>
* <li><code>position</code> - 3D vertex position. 64-bit floating-point (for precision). 3 components per attribute. See {@link VertexFormat#position}.</li>
* <li><code>normal</code> - Normal (normalized), commonly used for lighting. 32-bit floating-point. 3 components per attribute. See {@link VertexFormat#normal}.</li>
* <li><code>st</code> - 2D texture coordinate. 32-bit floating-point. 2 components per attribute. See {@link VertexFormat#st}.</li>
* <li><code>bitangent</code> - Bitangent (normalized), used for tangent-space effects like bump mapping. 32-bit floating-point. 3 components per attribute. See {@link VertexFormat#bitangent}.</li>
* <li><code>tangent</code> - Tangent (normalized), used for tangent-space effects like bump mapping. 32-bit floating-point. 3 components per attribute. See {@link VertexFormat#tangent}.</li>
* </ul>
* </p>
* <p>
* The following attribute names are generally not created by a Geometry, but are added
* to a Geometry by a {@link Primitive} or {@link GeometryPipeline} functions to prepare
* the geometry for rendering.
* <ul>
* <li><code>position3DHigh</code> - High 32 bits for encoded 64-bit position computed with {@link GeometryPipeline.encodeAttribute}. 32-bit floating-point. 4 components per attribute.</li>
* <li><code>position3DLow</code> - Low 32 bits for encoded 64-bit position computed with {@link GeometryPipeline.encodeAttribute}. 32-bit floating-point. 4 components per attribute.</li>
* <li><code>position3DHigh</code> - High 32 bits for encoded 64-bit 2D (Columbus view) position computed with {@link GeometryPipeline.encodeAttribute}. 32-bit floating-point. 4 components per attribute.</li>
* <li><code>position2DLow</code> - Low 32 bits for encoded 64-bit 2D (Columbus view) position computed with {@link GeometryPipeline.encodeAttribute}. 32-bit floating-point. 4 components per attribute.</li>
* <li><code>color</code> - RGBA color (normalized) usually from {@link GeometryInstance#color}. 32-bit floating-point. 4 components per attribute.</li>
* <li><code>pickColor</code> - RGBA color used for picking. 32-bit floating-point. 4 components per attribute.</li>
* </ul>
* </p>
*
* @type GeometryAttributes
*
* @default undefined
*
*
* @example
* geometry.attributes.position = new Cesium.GeometryAttribute({
* componentDatatype : Cesium.ComponentDatatype.FLOAT,
* componentsPerAttribute : 3,
* values : new Float32Array(0)
* });
*
* @see GeometryAttribute
* @see VertexFormat
*/
this.attributes = options.attributes;
/**
* Optional index data that - along with {@link Geometry#primitiveType} -
* determines the primitives in the geometry.
*
* @type Array
*
* @default undefined
*/
this.indices = options.indices;
/**
* The type of primitives in the geometry. This is most often {@link PrimitiveType.TRIANGLES},
* but can varying based on the specific geometry.
*
* @type PrimitiveType
*
* @default undefined
*/
this.primitiveType = when.defaultValue(options.primitiveType, PrimitiveType$1.TRIANGLES);
/**
* An optional bounding sphere that fully encloses the geometry. This is
* commonly used for culling.
*
* @type BoundingSphere
*
* @default undefined
*/
this.boundingSphere = options.boundingSphere;
/**
* @private
*/
this.geometryType = when.defaultValue(options.geometryType, GeometryType$1.NONE);
/**
* @private
*/
this.boundingSphereCV = options.boundingSphereCV;
/**
* @private
* Used for computing the bounding sphere for geometry using the applyOffset vertex attribute
*/
this.offsetAttribute = options.offsetAttribute;
}
/**
* Computes the number of vertices in a geometry. The runtime is linear with
* respect to the number of attributes in a vertex, not the number of vertices.
*
* @param {Geometry} geometry The geometry.
* @returns {Number} The number of vertices in the geometry.
*
* @example
* var numVertices = Cesium.Geometry.computeNumberOfVertices(geometry);
*/
Geometry.computeNumberOfVertices = function(geometry) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('geometry', geometry);
//>>includeEnd('debug');
var numberOfVertices = -1;
for ( var property in geometry.attributes) {
if (geometry.attributes.hasOwnProperty(property) &&
when.defined(geometry.attributes[property]) &&
when.defined(geometry.attributes[property].values)) {
var attribute = geometry.attributes[property];
var num = attribute.values.length / attribute.componentsPerAttribute;
//>>includeStart('debug', pragmas.debug);
if ((numberOfVertices !== num) && (numberOfVertices !== -1)) {
throw new Check.DeveloperError('All attribute lists must have the same number of attributes.');
}
//>>includeEnd('debug');
numberOfVertices = num;
}
}
return numberOfVertices;
};
var rectangleCenterScratch = new Cartesian2.Cartographic();
var enuCenterScratch = new Cartesian2.Cartesian3();
var fixedFrameToEnuScratch = new Transforms.Matrix4();
var boundingRectanglePointsCartographicScratch = [new Cartesian2.Cartographic(), new Cartesian2.Cartographic(), new Cartesian2.Cartographic()];
var boundingRectanglePointsEnuScratch = [new Cartesian2.Cartesian2(), new Cartesian2.Cartesian2(), new Cartesian2.Cartesian2()];
var points2DScratch = [new Cartesian2.Cartesian2(), new Cartesian2.Cartesian2(), new Cartesian2.Cartesian2()];
var pointEnuScratch = new Cartesian2.Cartesian3();
var enuRotationScratch = new Transforms.Quaternion();
var enuRotationMatrixScratch = new Transforms.Matrix4();
var rotation2DScratch = new Matrix2();
/**
* For remapping texture coordinates when rendering GroundPrimitives with materials.
* GroundPrimitive texture coordinates are computed to align with the cartographic coordinate system on the globe.
* However, EllipseGeometry, RectangleGeometry, and PolygonGeometry all bake rotations to per-vertex texture coordinates
* using different strategies.
*
* This method is used by EllipseGeometry and PolygonGeometry to approximate the same visual effect.
* We encapsulate rotation and scale by computing a "transformed" texture coordinate system and computing
* a set of reference points from which "cartographic" texture coordinates can be remapped to the "transformed"
* system using distances to lines in 2D.
*
* This approximation becomes less accurate as the covered area increases, especially for GroundPrimitives near the poles,
* but is generally reasonable for polygons and ellipses around the size of USA states.
*
* RectangleGeometry has its own version of this method that computes remapping coordinates using cartographic space
* as an intermediary instead of local ENU, which is more accurate for large-area rectangles.
*
* @param {Cartesian3[]} positions Array of positions outlining the geometry
* @param {Number} stRotation Texture coordinate rotation.
* @param {Ellipsoid} ellipsoid Ellipsoid for projecting and generating local vectors.
* @param {Rectangle} boundingRectangle Bounding rectangle around the positions.
* @returns {Number[]} An array of 6 numbers specifying [minimum point, u extent, v extent] as points in the "cartographic" system.
* @private
*/
Geometry._textureCoordinateRotationPoints = function(positions, stRotation, ellipsoid,