cesium
Version:
CesiumJS is a JavaScript library for creating 3D globes and 2D maps in a web browser without a plugin.
436 lines (388 loc) • 19.2 kB
JavaScript
import arrayFill from './arrayFill.js';
import BoundingSphere from './BoundingSphere.js';
import Cartesian3 from './Cartesian3.js';
import ComponentDatatype from './ComponentDatatype.js';
import defaultValue from './defaultValue.js';
import defined from './defined.js';
import DeveloperError from './DeveloperError.js';
import Ellipsoid from './Ellipsoid.js';
import Geometry from './Geometry.js';
import GeometryAttribute from './GeometryAttribute.js';
import GeometryAttributes from './GeometryAttributes.js';
import GeometryOffsetAttribute from './GeometryOffsetAttribute.js';
import IndexDatatype from './IndexDatatype.js';
import CesiumMath from './Math.js';
import PrimitiveType from './PrimitiveType.js';
var defaultRadii = new Cartesian3(1.0, 1.0, 1.0);
var cos = Math.cos;
var sin = Math.sin;
/**
* A description of the outline of an ellipsoid centered at the origin.
*
* @alias EllipsoidOutlineGeometry
* @constructor
*
* @param {Object} [options] Object with the following properties:
* @param {Cartesian3} [options.radii=Cartesian3(1.0, 1.0, 1.0)] The radii of the ellipsoid in the x, y, and z directions.
* @param {Cartesian3} [options.innerRadii=options.radii] The inner radii of the ellipsoid in the x, y, and z directions.
* @param {Number} [options.minimumClock=0.0] The minimum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis.
* @param {Number} [options.maximumClock=2*PI] The maximum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis.
* @param {Number} [options.minimumCone=0.0] The minimum angle measured from the positive z-axis and toward the negative z-axis.
* @param {Number} [options.maximumCone=PI] The maximum angle measured from the positive z-axis and toward the negative z-axis.
* @param {Number} [options.stackPartitions=10] The count of stacks for the ellipsoid (1 greater than the number of parallel lines).
* @param {Number} [options.slicePartitions=8] The count of slices for the ellipsoid (Equal to the number of radial lines).
* @param {Number} [options.subdivisions=128] The number of points per line, determining the granularity of the curvature.
*
* @exception {DeveloperError} options.stackPartitions must be greater than or equal to one.
* @exception {DeveloperError} options.slicePartitions must be greater than or equal to zero.
* @exception {DeveloperError} options.subdivisions must be greater than or equal to zero.
*
* @example
* var ellipsoid = new Cesium.EllipsoidOutlineGeometry({
* radii : new Cesium.Cartesian3(1000000.0, 500000.0, 500000.0),
* stackPartitions: 6,
* slicePartitions: 5
* });
* var geometry = Cesium.EllipsoidOutlineGeometry.createGeometry(ellipsoid);
*/
function EllipsoidOutlineGeometry(options) {
options = defaultValue(options, defaultValue.EMPTY_OBJECT);
var radii = defaultValue(options.radii, defaultRadii);
var innerRadii = defaultValue(options.innerRadii, radii);
var minimumClock = defaultValue(options.minimumClock, 0.0);
var maximumClock = defaultValue(options.maximumClock, CesiumMath.TWO_PI);
var minimumCone = defaultValue(options.minimumCone, 0.0);
var maximumCone = defaultValue(options.maximumCone, CesiumMath.PI);
var stackPartitions = Math.round(defaultValue(options.stackPartitions, 10));
var slicePartitions = Math.round(defaultValue(options.slicePartitions, 8));
var subdivisions = Math.round(defaultValue(options.subdivisions, 128));
//>>includeStart('debug', pragmas.debug);
if (stackPartitions < 1) {
throw new DeveloperError('options.stackPartitions cannot be less than 1');
}
if (slicePartitions < 0) {
throw new DeveloperError('options.slicePartitions cannot be less than 0');
}
if (subdivisions < 0) {
throw new DeveloperError('options.subdivisions must be greater than or equal to zero.');
}
if (defined(options.offsetAttribute) && options.offsetAttribute === GeometryOffsetAttribute.TOP) {
throw new DeveloperError('GeometryOffsetAttribute.TOP is not a supported options.offsetAttribute for this geometry.');
}
//>>includeEnd('debug');
this._radii = Cartesian3.clone(radii);
this._innerRadii = Cartesian3.clone(innerRadii);
this._minimumClock = minimumClock;
this._maximumClock = maximumClock;
this._minimumCone = minimumCone;
this._maximumCone = maximumCone;
this._stackPartitions = stackPartitions;
this._slicePartitions = slicePartitions;
this._subdivisions = subdivisions;
this._offsetAttribute = options.offsetAttribute;
this._workerName = 'createEllipsoidOutlineGeometry';
}
/**
* The number of elements used to pack the object into an array.
* @type {Number}
*/
EllipsoidOutlineGeometry.packedLength = 2 * (Cartesian3.packedLength) + 8;
/**
* Stores the provided instance into the provided array.
*
* @param {EllipsoidOutlineGeometry} value The value to pack.
* @param {Number[]} array The array to pack into.
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {Number[]} The array that was packed into
*/
EllipsoidOutlineGeometry.pack = function(value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
if (!defined(value)) {
throw new DeveloperError('value is required');
}
if (!defined(array)) {
throw new DeveloperError('array is required');
}
//>>includeEnd('debug');
startingIndex = defaultValue(startingIndex, 0);
Cartesian3.pack(value._radii, array, startingIndex);
startingIndex += Cartesian3.packedLength;
Cartesian3.pack(value._innerRadii, array, startingIndex);
startingIndex += Cartesian3.packedLength;
array[startingIndex++] = value._minimumClock;
array[startingIndex++] = value._maximumClock;
array[startingIndex++] = value._minimumCone;
array[startingIndex++] = value._maximumCone;
array[startingIndex++] = value._stackPartitions;
array[startingIndex++] = value._slicePartitions;
array[startingIndex++] = value._subdivisions;
array[startingIndex] = defaultValue(value._offsetAttribute, -1);
return array;
};
var scratchRadii = new Cartesian3();
var scratchInnerRadii = new Cartesian3();
var scratchOptions = {
radii : scratchRadii,
innerRadii : scratchInnerRadii,
minimumClock : undefined,
maximumClock : undefined,
minimumCone : undefined,
maximumCone : undefined,
stackPartitions : undefined,
slicePartitions : undefined,
subdivisions : undefined,
offsetAttribute : undefined
};
/**
* Retrieves an instance from a packed array.
*
* @param {Number[]} array The packed array.
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {EllipsoidOutlineGeometry} [result] The object into which to store the result.
* @returns {EllipsoidOutlineGeometry} The modified result parameter or a new EllipsoidOutlineGeometry instance if one was not provided.
*/
EllipsoidOutlineGeometry.unpack = function(array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(array)) {
throw new DeveloperError('array is required');
}
//>>includeEnd('debug');
startingIndex = defaultValue(startingIndex, 0);
var radii = Cartesian3.unpack(array, startingIndex, scratchRadii);
startingIndex += Cartesian3.packedLength;
var innerRadii = Cartesian3.unpack(array, startingIndex, scratchInnerRadii);
startingIndex += Cartesian3.packedLength;
var minimumClock = array[startingIndex++];
var maximumClock = array[startingIndex++];
var minimumCone = array[startingIndex++];
var maximumCone = array[startingIndex++];
var stackPartitions = array[startingIndex++];
var slicePartitions = array[startingIndex++];
var subdivisions = array[startingIndex++];
var offsetAttribute = array[startingIndex];
if (!defined(result)) {
scratchOptions.minimumClock = minimumClock;
scratchOptions.maximumClock = maximumClock;
scratchOptions.minimumCone = minimumCone;
scratchOptions.maximumCone = maximumCone;
scratchOptions.stackPartitions = stackPartitions;
scratchOptions.slicePartitions = slicePartitions;
scratchOptions.subdivisions = subdivisions;
scratchOptions.offsetAttribute = offsetAttribute === -1 ? undefined : offsetAttribute;
return new EllipsoidOutlineGeometry(scratchOptions);
}
result._radii = Cartesian3.clone(radii, result._radii);
result._innerRadii = Cartesian3.clone(innerRadii, result._innerRadii);
result._minimumClock = minimumClock;
result._maximumClock = maximumClock;
result._minimumCone = minimumCone;
result._maximumCone = maximumCone;
result._stackPartitions = stackPartitions;
result._slicePartitions = slicePartitions;
result._subdivisions = subdivisions;
result._offsetAttribute = offsetAttribute === -1 ? undefined : offsetAttribute;
return result;
};
/**
* Computes the geometric representation of an outline of an ellipsoid, including its vertices, indices, and a bounding sphere.
*
* @param {EllipsoidOutlineGeometry} ellipsoidGeometry A description of the ellipsoid outline.
* @returns {Geometry|undefined} The computed vertices and indices.
*/
EllipsoidOutlineGeometry.createGeometry = function(ellipsoidGeometry) {
var radii = ellipsoidGeometry._radii;
if ((radii.x <= 0) || (radii.y <= 0) || (radii.z <= 0)) {
return;
}
var innerRadii = ellipsoidGeometry._innerRadii;
if ((innerRadii.x <= 0) || (innerRadii.y <= 0) || (innerRadii.z <= 0)) {
return;
}
var minimumClock = ellipsoidGeometry._minimumClock;
var maximumClock = ellipsoidGeometry._maximumClock;
var minimumCone = ellipsoidGeometry._minimumCone;
var maximumCone = ellipsoidGeometry._maximumCone;
var subdivisions = ellipsoidGeometry._subdivisions;
var ellipsoid = Ellipsoid.fromCartesian3(radii);
// Add an extra slice and stack to remain consistent with EllipsoidGeometry
var slicePartitions = ellipsoidGeometry._slicePartitions + 1;
var stackPartitions = ellipsoidGeometry._stackPartitions + 1;
slicePartitions = Math.round(slicePartitions * Math.abs(maximumClock - minimumClock) / CesiumMath.TWO_PI);
stackPartitions = Math.round(stackPartitions * Math.abs(maximumCone - minimumCone) / CesiumMath.PI);
if (slicePartitions < 2) {
slicePartitions = 2;
}
if (stackPartitions < 2) {
stackPartitions = 2;
}
var extraIndices = 0;
var vertexMultiplier = 1.0;
var hasInnerSurface = ((innerRadii.x !== radii.x) || (innerRadii.y !== radii.y) || innerRadii.z !== radii.z);
var isTopOpen = false;
var isBotOpen = false;
if (hasInnerSurface) {
vertexMultiplier = 2.0;
// Add 2x slicePartitions to connect the top/bottom of the outer to
// the top/bottom of the inner
if (minimumCone > 0.0) {
isTopOpen = true;
extraIndices += slicePartitions;
}
if (maximumCone < Math.PI) {
isBotOpen = true;
extraIndices += slicePartitions;
}
}
var vertexCount = subdivisions * vertexMultiplier * (stackPartitions + slicePartitions);
var positions = new Float64Array(vertexCount * 3);
// Multiply by two because two points define each line segment
var numIndices = 2 * (vertexCount + extraIndices - (slicePartitions + stackPartitions) * vertexMultiplier);
var indices = IndexDatatype.createTypedArray(vertexCount, numIndices);
var i;
var j;
var theta;
var phi;
var index = 0;
// Calculate sin/cos phi
var sinPhi = new Array(stackPartitions);
var cosPhi = new Array(stackPartitions);
for (i = 0; i < stackPartitions; i++) {
phi = minimumCone + i * (maximumCone - minimumCone) / (stackPartitions - 1);
sinPhi[i] = sin(phi);
cosPhi[i] = cos(phi);
}
// Calculate sin/cos theta
var sinTheta = new Array(subdivisions);
var cosTheta = new Array(subdivisions);
for (i = 0; i < subdivisions; i++) {
theta = minimumClock + i * (maximumClock - minimumClock) / (subdivisions - 1);
sinTheta[i] = sin(theta);
cosTheta[i] = cos(theta);
}
// Calculate the latitude lines on the outer surface
for (i = 0; i < stackPartitions; i++) {
for (j = 0; j < subdivisions; j++) {
positions[index++] = radii.x * sinPhi[i] * cosTheta[j];
positions[index++] = radii.y * sinPhi[i] * sinTheta[j];
positions[index++] = radii.z * cosPhi[i];
}
}
// Calculate the latitude lines on the inner surface
if (hasInnerSurface) {
for (i = 0; i < stackPartitions; i++) {
for (j = 0; j < subdivisions; j++) {
positions[index++] = innerRadii.x * sinPhi[i] * cosTheta[j];
positions[index++] = innerRadii.y * sinPhi[i] * sinTheta[j];
positions[index++] = innerRadii.z * cosPhi[i];
}
}
}
// Calculate sin/cos phi
sinPhi.length = subdivisions;
cosPhi.length = subdivisions;
for (i = 0; i < subdivisions; i++) {
phi = minimumCone + i * (maximumCone - minimumCone) / (subdivisions - 1);
sinPhi[i] = sin(phi);
cosPhi[i] = cos(phi);
}
// Calculate sin/cos theta for each slice partition
sinTheta.length = slicePartitions;
cosTheta.length = slicePartitions;
for (i = 0; i < slicePartitions; i++) {
theta = minimumClock + i * (maximumClock - minimumClock) / (slicePartitions - 1);
sinTheta[i] = sin(theta);
cosTheta[i] = cos(theta);
}
// Calculate the longitude lines on the outer surface
for (i = 0; i < subdivisions; i++) {
for (j = 0; j < slicePartitions; j++) {
positions[index++] = radii.x * sinPhi[i] * cosTheta[j];
positions[index++] = radii.y * sinPhi[i] * sinTheta[j];
positions[index++] = radii.z * cosPhi[i];
}
}
// Calculate the longitude lines on the inner surface
if (hasInnerSurface) {
for (i = 0; i < subdivisions; i++) {
for (j = 0; j < slicePartitions; j++) {
positions[index++] = innerRadii.x * sinPhi[i] * cosTheta[j];
positions[index++] = innerRadii.y * sinPhi[i] * sinTheta[j];
positions[index++] = innerRadii.z * cosPhi[i];
}
}
}
// Create indices for the latitude lines
index = 0;
for (i = 0; i < stackPartitions * vertexMultiplier; i++) {
var topOffset = i * subdivisions;
for (j = 0; j < subdivisions - 1; j++) {
indices[index++] = topOffset + j;
indices[index++] = topOffset + j + 1;
}
}
// Create indices for the outer longitude lines
var offset = stackPartitions * subdivisions * vertexMultiplier;
for (i = 0; i < slicePartitions; i++) {
for (j = 0; j < subdivisions - 1; j++) {
indices[index++] = offset + i + (j * slicePartitions);
indices[index++] = offset + i + (j + 1) * slicePartitions;
}
}
// Create indices for the inner longitude lines
if (hasInnerSurface) {
offset = stackPartitions * subdivisions * vertexMultiplier + slicePartitions * subdivisions;
for (i = 0; i < slicePartitions; i++) {
for (j = 0; j < subdivisions - 1; j++) {
indices[index++] = offset + i + (j * slicePartitions);
indices[index++] = offset + i + (j + 1) * slicePartitions;
}
}
}
if (hasInnerSurface) {
var outerOffset = stackPartitions * subdivisions * vertexMultiplier;
var innerOffset = outerOffset + (subdivisions * slicePartitions);
if (isTopOpen) {
// Draw lines from the top of the inner surface to the top of the outer surface
for (i = 0; i < slicePartitions; i++) {
indices[index++] = outerOffset + i;
indices[index++] = innerOffset + i;
}
}
if (isBotOpen) {
// Draw lines from the top of the inner surface to the top of the outer surface
outerOffset += (subdivisions * slicePartitions) - slicePartitions;
innerOffset += (subdivisions * slicePartitions) - slicePartitions;
for (i = 0; i < slicePartitions; i++) {
indices[index++] = outerOffset + i;
indices[index++] = innerOffset + i;
}
}
}
var attributes = new GeometryAttributes({
position : new GeometryAttribute({
componentDatatype : ComponentDatatype.DOUBLE,
componentsPerAttribute : 3,
values : positions
})
});
if (defined(ellipsoidGeometry._offsetAttribute)) {
var length = positions.length;
var applyOffset = new Uint8Array(length / 3);
var offsetValue = ellipsoidGeometry._offsetAttribute === GeometryOffsetAttribute.NONE ? 0 : 1;
arrayFill(applyOffset, offsetValue);
attributes.applyOffset = new GeometryAttribute({
componentDatatype : ComponentDatatype.UNSIGNED_BYTE,
componentsPerAttribute : 1,
values : applyOffset
});
}
return new Geometry({
attributes : attributes,
indices : indices,
primitiveType : PrimitiveType.LINES,
boundingSphere : BoundingSphere.fromEllipsoid(ellipsoid),
offsetAttribute : ellipsoidGeometry._offsetAttribute
});
};
export default EllipsoidOutlineGeometry;