UNPKG

cejs

Version:

A JavaScript module framework that is simple to use.

1,889 lines (1,688 loc) 123 kB
/** * @name CeL function for mathematics. * @fileoverview 本檔案包含了數學演算相關的 functions。 * * TODO: 方程式圖形顯示 by SVG * * @see http://www.wolframalpha.com/<br /> * http://www.numberempire.com/ */ // More examples: see /_test suite/test.js 'use strict'; // 'use asm'; // -------------------------------------------------------------------------------------------- // 不採用 if 陳述式,可以避免 Eclipse JSDoc 與 format 多縮排一層。 typeof CeL === 'function' && CeL.run({ // module name name : 'data.math', require : 'data.code.compatibility.|data.native.set_bind', // 設定不匯出的子函式。 // no_extend : '*', // 為了方便格式化程式碼,因此將 module 函式主體另外抽出。 code : module_code }); function module_code(library_namespace) { // requiring var set_bind = this.r('set_bind'); var has_bigint = library_namespace.env.has_bigint; /** * null module constructor * * @class 數學相關的 functions */ var _// JSDT:_module_ = function() { // null module constructor }; /** * for JSDT: 有 prototype 才會將之當作 Class */ _// JSDT:_module_ .prototype = {}; /** * <code> 數位 十分位 tenths digit 整數 whole number </code> */ // ---------------------------------------------------------------------// // basic constants. 定義基本常數。 var /** * empty product, or nullary product, 乘法單位元素.<br /> * number * MULTIPLICATIVE_IDENTITY === number.<br /> * 2/2, 3/3, .. * * MULTIPLICATIVE_IDENTITY = 1 * * @type {Number} * @constant * * @see https://en.wikipedia.org/wiki/Identity_element * https://en.wikipedia.org/wiki/Empty_product */ MULTIPLICATIVE_IDENTITY = 1 / 1, /** * Any nonzero number raised by the exponent 0 is 1.<br /> * (any number) ^ 0 === Math.pow(number, 0) === ZERO_EXPONENT<br /> * Math.pow(2, 0), Math.pow(3, 0), .. * * ZERO_EXPONENT = 1 * * @type {Number} * @constant * * @see https://en.wikipedia.org/wiki/Exponentiation */ ZERO_EXPONENT = Math.pow(1, 0), /** * absorbing element, zero element.<br /> * number * ABSORBING_ELEMENT === ABSORBING_ELEMENT<br /> * Math.pow(2, 0), Math.pow(3, 0), .. * * @type {Number} * @constant * * @see https://en.wikipedia.org/wiki/Absorbing_element */ ABSORBING_ELEMENT = 0, /** * multiplication sign. e.g., '⋅', '*', '×'. * * @type {String} * @constant * * @see https://en.wikipedia.org/wiki/Multiplication_sign * https://en.wikipedia.org/wiki/Interpunct */ MULTIPLICATION_SIGN = '⋅', /** * default base = 10.<br /> * 內定:10位數。應與 parseInt() 一致。 * * @type {Natural} * @constant */ DEFAULT_BASE = parseInt('10'), /** * The biggest integer we can square. 超過此數則無法安全操作平方。 * * @type {Natural} * @constant */ sqrt_max_integer = Math.sqrt(Number.MAX_SAFE_INTEGER) | 0; // ---------------------------------------------------------------------// /** * use Horner's method to calculate the value of polynomial. * * @param {Array}coefficients * coefficients of polynomial.<br /> * coefficients: [ degree 0, degree 1, degree 2, ... ] * @param {Number}variable * value of (x) * * @returns {Number} the value of polynomial * * @see https://en.wikipedia.org/wiki/Horner%27s_method */ function polynomial_value(coefficients, variable) { return coefficients.reduceRight(function(value, coefficient) { return value * variable + coefficient; }); } _.polynomial_value = polynomial_value; _// JSDT:_module_ . /** * 輾轉相除 n1/n2 或 小數 n1/1 轉成 整數/整數。 * * @param {Natural}n1 * number 1 * @param {Natural}[n2] * number 2 * @param {Natural}times * maximum times 次數, 1,2,.. * * @return {Array} 連分數序列 (continued fraction) ** 負數視 _.mutual_division.done * 而定! */ mutual_division = function mutual_division(n1, n2, times) { var q = [], c; if (isNaN(times) || times <= 0) times = 80; if (!n2 || isNaN(n2)) n2 = 1; if (!Number.isInteger(n1)) { c = n1; var i = 9, f = n2; while (i--) { // 以整數運算比較快!這樣會造成整數多4%,浮點數多1/3倍的時間,但仍值得。 f *= DEFAULT_BASE; c *= DEFAULT_BASE; if (Number.isInteger(c)) { n1 = c; n2 = f; break; } } } // 連分數負數之處理。更沒問題的: (n1 < 0?1:0) ^ (n2 < 0?1:0) if (_.mutual_division.mode && ((n1 < 0) ^ (n2 < 0))) { // 使兩數皆為正 if (n2 < 0) n2 = -n2; else n1 = -n1; q.push(-(1 + (n1 - (c = n1 % n2)) / n2)); n1 = n2; n2 -= c; } // old: if (false) { while (b && n--) { // 2.08s@10000 // 可能因為少設定(=)一次c所以較快。但(若輸入不為整數)不確保d為整數?用Math.floor((a-(c=a%b))/b)可確保,速度與下式一樣快。 c = a % b; d.push((a - c) / b); a = b; b = c; // 2.14s@10000:mutual_division(.142857) // d.push(c=Math.floor(a/b)),c=a-b*c,a=b,b=c; // 2.2s@10000 // d.push(Math.floor(a/b)),b=a%(c=b),a=c; } if (n) d.push(0); } // 2.4s@10000 // 可能因為少設定(=)一次c所以較快。但(若輸入不為整數)不確保d為整數?用Math.floor((a-(c=a%b))/b)可確保,速度與下式一樣快。 while (times--) if (n2) { c = n1 % n2; q.push((n1 - c) / n2); n1 = n2; n2 = c; } else { // [ ... , done mark, (最後非零的餘數。若原 n1, n2 皆為整數,則此值為 // GCD。但請注意:這邊是已經經過前面為了以整數運算,增加倍率過的數值!!) ] q.push(_.mutual_division.done, n1); // library_namespace.debug('done: ' + q); break; } /** * <code> // 2.26s@10000 while(b&&n--)if(d.push((a-(c=a%b))/b),a=b,!(b=c)){d.push(0);break;} var m=1;c=1;while(m&&n--)d.push(m=++c%2?b?(a-(a%=b))/b:0:a?(b-(b%=a))/a:0);//buggy </code> */ return q; }; _// JSDT:_module_ .mutual_division.done = -7;// '' _// JSDT:_module_ . /** * !!mode:連分數處理,對負數僅有最初一數為負。 */ mutual_division.mode = 0; _// JSDT:_module_ . /** * 取得連分數序列的數值。 * * @param {Array}sequence * 序列 * @param {Natural}[max_no] * maximum no. 取至第 max_no 個 * * @return {Array}連分數序列的數值 * * @requires mutual_division.done */ continued_fraction = function(sequence, max_no) { if (!Array.isArray(sequence) || !sequence.length) return sequence; if (sequence.at(-2) === _.mutual_division.done) sequence.length -= 2; if (sequence.length < 1) return sequence; if (!max_no/* || max_no < 2 */|| max_no > sequence.length) max_no = sequence.length; var a, b; if (max_no % 2) { b = 1; a = 0; } else { a = 1; b = 0; } if (false) { sequence[max_no++] = 1; if (--max_no % 2) { b = sequence[max_no]; a = s[--max_no]; } else { a = sequence[max_no]; b = sequence[--max_no]; } } if (false) library_namespace.debug('a=' + a + ', b=' + b + ', max_no=' + max_no); while (max_no--) if (max_no % 2) b += a * sequence[max_no]; else a += b * sequence[max_no]; if (false) library_namespace.debug('a=' + a + ', b=' + b); return [ a, b ]; }; // quadratic (m√r + i) / D → continued fraction [... , [period ...]] // Rosen, Kenneth H. (2011). Elementary Number Theory and its Applications // (6th edition). Boston: Pearson Addison-Wesley. pp. 508–511. // https://en.wikipedia.org/wiki/Periodic_continued_fraction // https://en.wikipedia.org/wiki/Square_root_of_2 // https://en.wikipedia.org/wiki/Square_root#As_periodic_continued_fractions // https://en.wikipedia.org/wiki/Generalized_continued_fraction#Roots_of_positive_numbers function quadratic_to_continued_fraction(r, m, i, D) { if (r < 0) { throw 'The root is negative!'; } if (!i) i = 0; if (!D) D = 1; if (!m) m = 1; else if (m < 0) { m = -m; i = -i; D = -D; } // (m√r + i) / D // = (√(r m^2) + i) / D // = (√(d in book) + P0) / Q0 var d = m * m * r, // P = i, Q = D, // A: α in book. A, a, sequence = [], ptr = sequence, start_PQ; // Be sure Q0 | (d - P0^2) if ((d - P * P) % Q !== 0) P *= Q, d *= Q * Q, Q *= Q; // assert: now: Q0 | (d - P0^2) for (var sqrt = Math.sqrt(d), t;;) { if (start_PQ) { if (P === start_PQ[0] && Q === start_PQ[1]) return sequence; } else if (0 < (t = sqrt - P) && t < Q) { // test if α is purely periodic. start_PQ = [ P, Q ]; sequence.push(ptr = []); } ptr.push(a = Math.floor(A = (sqrt + P) / Q)); library_namespace.debug(((sequence === ptr ? 0 : sequence.length - 1) + ptr.length - 1) + ': P=' + P + ', Q=' + Q + ', α≈' + (DEFAULT_BASE * A | 0) / DEFAULT_BASE + ', a=' + a, 3); // set next Pn = a(n-1)Q(n-1) - P(n-1), Qn = (d - Pn^2) / Q(n-1). P = a * Q - P; Q = (d - P * P) / Q; if (Q === 0) // is not a quadratic irrationality? return sequence; // assert: Pn, Qn are both integers. } } _.quadratic_to_continued_fraction = quadratic_to_continued_fraction; // get the first solution of Pell's equation: x^2 - d y^2 = 1 or -1. // https://en.wikipedia.org/wiki/Pell%27s_equation // Rosen, Kenneth H. (2005). Elementary Number Theory and its Applications // (5th edition). Boston: Pearson Addison-Wesley. pp. 542-545. function solve_Pell(d, n, NO) { // TODO // use CeL.data.math.quadratic.solve_Pell instead ; } // _.solve_Pell = solve_Pell; _// JSDT:_module_ . /** * The best rational approximation. 取得值最接近之有理數 (use 連分數 continued fraction), * 取近似值. c.f., 調日法 在分子或分母小於下一個漸進分數的分數中,其值是最接近精準值的近似值。 * * @param {Number}number * number * @param {Number}[rate] * 比例在 rate 以上 * @param {Natural}[max_no] * maximum no. 最多取至序列第 max_no 個 TODO : 並小於 l: limit * * @return {Array}[分子, 分母, 誤差] * * @requires mutual_division,continued_fraction * @see https://en.wikipedia.org/wiki/Continued_fraction#Best_to_rational_numbers */ to_rational_number = function(number, rate, max_no) { if (!rate) // This is a magic number: 我們無法準確得知其界限為何。 rate = 65536; var d = _ .mutual_division(number, 1, max_no && max_no > 0 ? max_no : 20), i = 0, a, b = d[0], done = _.mutual_division.done; if (!b) b = d[++i]; while (++i < d.length && (a = d[i]) !== done) if (a / b < rate) b = a; else break; if (false) library_namespace.debug(number + ' ' + // 連分數表示 (continued fraction) (d.length > 1 && d.at(-2) === _.mutual_division.done ? '=' + ' [<em>' + d[0] + ';' + d.slice(1, i).join(', ') + '</em>' + (i < d.length - 2 ? ', ' + d.slice(i, -2).join(', ') : '') + '] ... ' + d.slice(-1) : // 約等於的符號是≈或≒,不等於的符號是≠。 // https://zh.wikipedia.org/wiki/%E7%AD%89%E4%BA%8E '≈' + ' [<em>' + d[0] + ';' + d.slice(1, i).join(', ') + '</em>' + (i < d.length ? ', ' + d.slice(i).join(', ') : '') + ']: ' + d.length + ',' + i + ',' + d[i])); d = _.continued_fraction(d, i); if (d[1] < 0) { d[0] = -d[0]; d[1] = -d[1]; } if (false) library_namespace.debug('→ ' + d[0] + '/' + d[1]); // [ {Integer}±numerator, {Natural}denominator ] return [ d[0], d[1], d[0] / d[1] - number ]; }; // 正規化帶分數。 to_mixed_fraction // 2019/7/10 14:22:6 // mixed_fraction = // [ {Integer}±whole, {Integer}±numerator, {Natural|Undefined}denominator ] function normalize_mixed_fraction(mixed_fraction) { if (typeof mixed_fraction === 'number') { // treat as float mixed_fraction = [ mixed_fraction ]; } var whole = mixed_fraction[0] || ABSORBING_ELEMENT; var numerator = mixed_fraction[1] || ABSORBING_ELEMENT; var denominator = mixed_fraction[2] || MULTIPLICATIVE_IDENTITY; // {Natural}denominator >= 1 if (denominator < 0) { denominator = -denominator; numerator = -numerator; } // {Natural}denominator ∈ ℤ if (!Number.isInteger(denominator)) { // assert: is float denominator = _.to_rational_number(denominator); numerator *= typeof numerator === 'bigint' ? BigInt(denominator[1]) : denominator[1]; denominator = denominator[0]; } // {Integer}±numerator ∈ ℤ if (!Number.isInteger(numerator)) { // assert: is float numerator = _.to_rational_number(numerator); denominator *= typeof denominator === 'bigint' ? BigInt(numerator[1]) : numerator[1]; numerator = numerator[0]; } // assert: {Natural}denominator, {Integer}±numerator // TODO: 約分here。 var using_bigint; // {Integer}±whole ∈ ℤ if (typeof whole === 'number' && !Number.isInteger(whole)) { // assert: whole is float whole = _.to_rational_number(whole); var LCM = _.LCM(denominator, whole[1]); if (typeof LCM === 'bigint') { using_bigint = true; // convert all numbers to the same type. numerator = BigInt(numerator); denominator = BigInt(denominator); whole = whole.map(BigInt); } numerator = numerator // (LCM / denominator) === GCD * whole[1] * (LCM / denominator) + (whole[0] < 0 ? -(-whole[0] % whole[1]) : whole[0] % whole[1]) * (LCM / whole[1]); denominator = LCM; if (using_bigint) { whole = whole[0] / whole[1]; } else { whole = whole[0] < 0 ? -Math.floor(-whole[0] / whole[1]) : Math .floor(whole[0] / whole[1]); } } // TODO: convert all numbers to the same type. // whole, numerator 必須同符號。 if (whole * numerator < 0) { if (whole < 0) { whole++; // numerator > 0 numerator -= denominator; } else { whole--; // numerator < 0 numerator += denominator; } } // 處理假分數。同時會處理絕對值為整數之問題。 if (Math.absolute(numerator) >= denominator) { whole += using_bigint ? numerator / denominator : Math .floor(numerator / denominator); numerator %= denominator; } // 約分。 if (numerator == ABSORBING_ELEMENT) { // normalize denominator = MULTIPLICATIVE_IDENTITY; } else { var GCD = _.GCD(numerator, denominator); if (GCD >= 2) { if (using_bigint) GCD = BigInt(GCD); numerator /= GCD; denominator /= GCD; } } // export mixed_fraction = Object.assign([ whole, numerator, denominator ], { valueOf : mixed_fraction_valueOf, toString : mixed_fraction_toString }); return mixed_fraction; } function mixed_fraction_valueOf() { if (!this[1]) return this[0]; return this[0] + this[1] / this[2]; } function mixed_fraction_toString() { if (!this[1]) return String(this[0]); if (!this[0]) return this[1] + '/' + this[2]; return this[0] + (this[1] < 0 ? '' : '+') + this[1] + '/' + this[2]; } _.normalize_mixed_fraction = normalize_mixed_fraction; // ------------------------------------------------------------------------ // 正規化數字成 integer 或 bigint // 在大量計算前,盡可能先轉換成普通 {Number} 以加快速度。 // cohandler(may convert to number) function to_int_or_bigint(value, cohandler) { var number; if (typeof value === 'bigint') { number = Number(value); if (Number.isSafeInteger(number)) { cohandler && cohandler(true); return number; } else { cohandler && cohandler(false); return value; } } // 這方法無法準確處理像 `1e38/7`, `10/7` 這樣的情況。 if (typeof value === 'number') { number = Math.round(value); if (!Number.isSafeInteger(number)) { throw new RangeError('Cannot convert number ' + value + ' to safe integer!'); } cohandler && cohandler(true); return Math.round(number); } number = parseInt(value); if (Number.isSafeInteger(number)) { cohandler && cohandler(true); return number; } if (!has_bigint) throw new RangeError('Cannot convert ' + number + ' to safe integer!'); cohandler && cohandler(false); return BigInt(value); } // Let all elements of {Array}this the same type: int, else bigint. // 可能的話應該將絕對值最大的數字放在前面,早點判別出是否需要用 {BigInt}。 function array_to_int_or_bigint() { // assert: {Array}this // cache int values if (this.some(function(value, index) { value = to_int_or_bigint(value); this[index] = value; return typeof value === 'bigint'; }, this)) { // must using bigint this.forEach(function(value, index) { this[index] = BigInt(value); }, this); } // assert: all elements of `this` is in the same type. // typeof this[0] === typeof this[1] return this; } // 可用於 {BigInt} 之 Math.abs // https://en.wikipedia.org/wiki/Absolute_value function absolute(value) { return value < 0 ? -value : value; } Math.absolute = absolute; /** * 求多個數之 GCD(Greatest Common Divisor, 最大公因數/公約數).<br /> * Using Euclidean algorithm(輾轉相除法).<br /> * * TODO: 判斷互質. * * @param {Integers}number_array * number array * * @returns {Natural} GCD of the numbers specified */ function GCD(number_array) { if (arguments.length > 1) { // Array.from() number_array = Array.prototype.slice.call(arguments); } // 正規化數字。 number_array = number_array.map(function(value) { return Math.absolute(to_int_or_bigint(value)); }) // 由小至大排序可以減少計算次數?? 最起碼能夠延後使用 {BigInt} 的時機。 .sort(library_namespace.general_ascending) // .unique_sorted() ; // console.log(number_array); // 不在此先設定 gcd = number_array[0],是為了讓每個數字通過資格檢驗。 var index = 0, length = number_array.length, gcd = 0, remainder, number; // assert: 所有數字皆已先轉換成數字,並已轉為絕對值。 while (index < length) { number = number_array[index++]; if (number >= 1) { gcd = number; break; } } // console.log(gcd); while (index < length && 2 <= gcd) { number = number_array[index++]; if (!(number >= 1)) continue; if (typeof number === 'bigint') { number %= BigInt(gcd); // [ gcd, number ] = [ gcd, number ].to_int_or_bigint(); remainder = [ gcd, number ].to_int_or_bigint(); gcd = remainder[0]; number = remainder[1]; } // assert: typeof gcd === typeof number // console.log([ gcd, number ]); // Euclidean algorithm 輾轉相除法。 while ((remainder = number % gcd) >= 1) { number = gcd; // 使用絕對值最小的餘數。為了要處理 {BigInt},因此不採用 Math.min()。 // gcd = Math.min(remainder, gcd - remainder); gcd = gcd - remainder < remainder ? gcd - remainder : remainder; } } if (typeof gcd === 'bigint' && Number.isSafeInteger(number = Number(gcd))) { gcd = number; } return gcd; } _// JSDT:_module_ .GCD = GCD; _// JSDT:_module_ . /** * 求多個數之 LCM(Least Common Multiple, 最小公倍數): method 1.<br /> * Using 類輾轉相除法.<br /> * * @param {Integers}number_array * number array * * @returns {Natural} LCM of the numbers specified */ LCM = function LCM(number_array) { if (arguments.length > 1) { // Array.from() number_array = Array.prototype.slice.call(arguments); } // 正規化數字。 number_array = number_array.map(function(value) { return Math.absolute(to_int_or_bigint(value)); }) // .sort().reverse() ; if (number_array.some(function(number) { return number == 0; })) { // 允許 0: return 0; } var lcm = number_array[0]; for (var index = 1, length = number_array.length; index < length; index++) { var number = number_array[index]; // assert: {Integer}number var gcd = _.GCD(number, lcm); if (typeof number === typeof gcd) { number /= gcd; if (typeof number === typeof lcm) { gcd = lcm * number; if (Number.isSafeInteger(gcd)) { lcm = gcd; } else if (has_bigint) { lcm = BigInt(lcm) * BigInt(number); } else { throw new RangeError('LCM is not safe integer!'); } } else { // assert: {BigInt}number or {BigInt}lcm lcm = BigInt(lcm) * BigInt(number); } } else { // assert: {BigInt}number, {Number}gcd lcm = BigInt(lcm) * (number / BigInt(gcd)); } } return lcm; }; _// JSDT:_module_ . /** * 求多個數之 LCM(Least Common Multiple, 最小公倍數): method 1.<br /> * Using 類輾轉相除法.<br /> * * TODO: 更快的方法: 短除法? 一次算出 GCD, LCM? * * @param {Integers}number_array * number array * * @returns {Natural} LCM of the numbers specified */ LCM3 = function LCM3(number_array) { if (arguments.length > 1) { // Array.from() number_array = Array.prototype.slice.call(arguments); } // 正規化數字。 number_array = number_array.map(function(value) { return Math.absolute(to_int_or_bigint(value)); }) // .sort().reverse() ; if (number_array.some(function(number) { return number == 0; })) { // 允許 0: return 0; } var lcm = number_array[0], using_bigint; for (var index = 1, length = number_array.length; index < length; index++) { var number = number_array[index]; // assert: {Integer}number if (typeof number !== typeof lcm) { // assert: number, lcm 有一個是 bigint。 using_bigint = true; lcm = BigInt(lcm); number = BigInt(number); } // console.log([ lcm, number ]); var number0 = number; var lcm0 = lcm; // 倒反版的 Euclidean algorithm 輾轉相除法. // 反覆讓兩方各自加到比對方大的倍數,當兩者相同時,即為 lcm。 while (lcm !== number) { // console.log([ lcm0, number0, lcm, number ]); if (lcm > number) { var remainder = -lcm % number0; if (remainder) { number = lcm + remainder + number0; if (!using_bigint && has_bigint && !Number.isSafeInteger(number)) { using_bigint = true; number0 = BigInt(number0); lcm0 = BigInt(lcm0); number = BigInt(lcm + remainder) + number0; lcm = BigInt(lcm); } } else { // number0 整除 lcm: 取 lcm 即可. break; } } else { var remainder = -number % lcm0; if (remainder) { lcm = number + remainder + lcm0; if (!using_bigint && has_bigint && !Number.isSafeInteger(lcm)) { using_bigint = true; number0 = BigInt(number0); lcm0 = BigInt(lcm0); lcm = BigInt(number + remainder) + BigInt(lcm0); number = BigInt(number); } } else { // lcm0 整除 number: 取 number 即可. lcm = number; break; } } } } return lcm; }; _// JSDT:_module_ . /** * 求多個數之 LCM(Least Common Multiple, 最小公倍數): method 2.<br /> * Using 類輾轉相除法.<br /> * * @param {Integers}number_array * number array * * @returns {Integer} LCM of the numbers specified */ LCM2 = function LCM2(number_array) { if (arguments.length > 1) { // Array.from() number_array = Array.prototype.slice.call(arguments); } var i = 0, l = number_array.length, lcm = 1, r, n, num, gcd; for (; i < l && lcm; i++) { // 每個數字都要做運算,雖可確保正確,但沒有效率! if (!isNaN(num = n = Math.abs(parseInt(number_array[i])))) { gcd = lcm; // Euclidean algorithm. while (r = n % gcd) n = gcd, gcd = r; lcm = num / gcd * lcm; } } return lcm; }; /** * Get <a href="https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm" * accessdate="2013/8/3 19:45">Extended Euclidean algorithm</a><br /> * * @param {Integer}n1 * number 1 * @param {Integer}n2 * number 2 * @returns [ GCD, m1, m2 ]: GCD = m1 * n1 + m2 * n2 * * @see division_with_remainder() @ data.math * @since 2013/8/3 20:24:30 */ function extended_GCD(n1, n2) { var remainder, quotient, using_g1 = false, using_bigint, // 前一group [dividend 應乘的倍數, divisor 應乘的倍數] m1g1 = 1, m2g1 = 0; if (typeof n1 === 'bigint' || typeof n2 === 'bigint') { // convert all numbers to the same type. n1 = BigInt(n1); n2 = BigInt(n2); m1g1 = BigInt(m1g1); m2g1 = BigInt(m2g1); using_bigint = true; } // 前前group [dividend 應乘的倍數, divisor 應乘的倍數] var m1g2 = /* 0 */m2g1, m2g2 = /* 1 */m1g1; while (remainder = n1 % n2) { quotient = (n1 - remainder) / n2; if (!using_bigint) { // assert: typeof quotient === 'number' quotient = Math.floor(quotient); } // 現 group = remainder = 前前group - quotient * 前一group if (using_g1 = !using_g1) m1g1 -= quotient * m1g2, m2g1 -= quotient * m2g2; else m1g2 -= quotient * m1g1, m2g2 -= quotient * m2g1; // swap numbers n1 = n2; n2 = remainder; } return using_g1 ? [ n2, m1g1, m2g1 ] : [ n2, m1g2, m2g2 ]; } // extended GCD algorithm _.EGCD = extended_GCD; /** * 帶餘除法 Euclidean division。<br /> * 除非設定 closest,否則預設 remainder ≥ 0. * * @param {Number}dividend * 被除數。 * @param {Number}divisor * 除數。 * @param {Boolean}[closest] * get the closest quotient * * @returns {Array} [ {Integer}quotient 商, {Number}remainder 餘數 ] * * @see http://stackoverflow.com/questions/14997165/fastest-way-to-get-a-positive-modulo-in-c-c * @see extended_GCD() @ data.math * * @since 2015/10/31 10:4:45 */ function division_with_remainder(dividend, divisor, closest) { if (false) return [ Math.floor(dividend / divisor), // 轉正。保證餘數值非負數。 (dividend % divisor + divisor) % divisor ]; var remainder = dividend % divisor; if (closest) { if (remainder != 0 // 0 !== 0n && Math.absolute(remainder + remainder) > Math.absolute(divisor)) if (remainder < 0) remainder += Math.absolute(divisor); else remainder -= Math.absolute(divisor); } else if (remainder < 0) { // assert: (-0 < 0) === false remainder += Math.absolute(divisor); } dividend = (dividend - remainder) / divisor; if (typeof dividend === 'number') { dividend = Math.round(dividend); } else { // assert: typeof dividend === 'bigint' } return [ dividend, remainder ]; } // 帶餘數除法 division with remainder _.division = division_with_remainder; /** * 取得所有分母為 denominator,分子分母互質的循環小數的循環節位數。<br /> * Repeating decimal: get period (repetend length) * * @param {Natural}denominator * 分母 * @param {Boolean}with_transient * 亦取得非循環節部分位數 * @param {Natural}min * 必須最小長度,在測試大量數字時使用。若發現長度必小於 min 則即時跳出。效果不俗 (test * Euler_26(1e7))。 * * @returns {Array}[{Number}period length 循環節位數 < denominator, * {Number}transient 非循環節部分位數 ] * * @see https://en.wikipedia.org/wiki/Repeating_decimal#Reciprocals_of_composite_integers_coprime_to_10 */ function period_length(denominator, with_transient, min) { // 去除所有 2 或 5 的因子。 var non_repeating = 0, non_repeating_5 = 0; while (denominator % 5 === 0) denominator /= 5, non_repeating_5++; while (denominator % 2 === 0) denominator /= 2, non_repeating++; if (non_repeating < non_repeating_5) non_repeating = non_repeating_5; if (denominator === 1 || denominator <= min) return with_transient ? [ 0, non_repeating ] : 0; for (var length = 1, remainder = 1;; length++) { remainder = remainder * DEFAULT_BASE % denominator; if (remainder === 1) return with_transient ? [ length, non_repeating ] : length; } } _.period_length = period_length; // ---------------------------------------------------------------------// /** * 從數集 set 中挑出某些數,使其積最接近指定的數 target。<br /> * To picks some numbers from set, so the product is approximately the * target number. * * TODO: improve/optimize * * @param {Array}set * number set of {Natural} * @param {Natural}target * target number * @param {Object}[options] * 附加參數/設定特殊功能與選項 * * @returns {Array}某些數,其積最接近 target。 * * @see http://stackoverflow.com/questions/19572043/given-a-target-sum-and-a-set-of-integers-find-the-closest-subset-of-numbers-tha */ function closest_product(set, target, options) { var status, minor_data; if (Array.isArray(options)) { status = options; minor_data = status[0]; options = minor_data.options; } else { // 初始化 if (!options) options = new Boolean; else if (typeof options === 'number') options = { direction : options }; else if (typeof options === 'boolean') options = { sorted : options }; minor_data = [ Infinity ]; minor_data.options = options; // status = [ [minor, set of minor], product, set of product ] status = [ minor_data, ZERO_EXPONENT, [] ]; if (!options.sorted) set = set.clone() // 由小至大排序。 .sort(library_namespace.ascending); } // direction = -1: 僅接受小於 target 的積。 // direction = +1: 僅接受大於 target 的積。 var direction = options.direction, // product = status[1], selected = status[2]; set.some(function(natural, index) { if (selected[index]) // 已經處理過,跳過。 return; var _product = product * natural, _selected, /** {Number}差 ≥ 0 */ difference = Math.abs(target - _product), // 是否發現新極小值。採用 minor_data 而不 cache 是因為此間 minor_data 可能已經改變。 _status = difference <= minor_data[0]; library_namespace.debug(target + '=' + (target - _product) + '+' + natural + '×' + product + ', ' + product + '=' + (set.filter(function(n, index) { return selected[index]; }).join('⋅') || 1), 6, 'closest_product'); if (target < _product) { library_namespace.debug('target < _product, direction: ' + direction, 6, 'closest_product'); if (!_status || direction < 0) { library_namespace.debug('積已經過大,之後不會有合適的。', 5, 'closest_product'); return true; } } _selected = selected.clone(); _selected[index] = true; if (_status && (!(direction > 0) || target <= _product)) { _status = set.filter(function(n, index) { return _selected[index]; }).join(closest_product.separator); if (difference === minor_data[0]) { if (minor_data.includes(_status)) { library_namespace.debug('已經處理過相同的,跳過。', 5, 'closest_product'); return; } minor_data.push(_status); } else { minor_data.clear(); minor_data.push(difference, _status); } library_namespace.debug('發現極小值:' + target + '=' + difference + '+' + natural + '×' + product + ', ' + product + '=' + (set.filter(function(n, index) { return selected[index]; }).join('⋅') || 1), 3, 'closest_product'); } _status = [ minor_data, _product, _selected ]; library_namespace.debug('繼續探究是否有更小的差:' + _status.join(';'), 4, 'closest_product'); closest_product(set, target, _status); }); return minor_data.length > 1 && minor_data; } closest_product.separator = MULTIPLICATION_SIGN; _.closest_product = closest_product; // TODO:將數列分為積最接近的兩組。 /** * Get <a * href="https://en.wikipedia.org/wiki/Modular_multiplicative_inverse" * accessdate="2013/8/3 20:10">modular multiplicative inverse</a> (模反元素) * * TODO:<br /> * untested! * * @param {Integer}number * number * @param {Integer}modulo * modulo * * @returns {Integer} modular multiplicative inverse * * @since 2013/8/3 20:24:30 */ function modular_inverse(number, modulo) { number = extended_GCD(number, modulo); if (number[0] == 1) return (number = number[1]) < 0 ? number + modulo : number; } _.modular_inverse = modular_inverse; // factorial_cache[ n ] = n! // factorial_cache = [ 0! = 1, 1!, 2!, ... ] var factorial_cache = [ 1 ], factorial_cache_to; /** * Get the factorial (階乘) of (natural).<br /> * * @param {ℕ⁰:Natural+0}natural * safe integer. 0–18 * * @returns {Natural}natural的階乘. * * @see https://en.wikipedia.org/wiki/Factorial */ function factorial(natural) { var length = factorial_cache.length; if (length <= natural && !factorial_cache_to) { var f = factorial_cache[--length]; while (length++ < natural) if (isFinite(f *= length)) factorial_cache.push(f); else { factorial_cache_to = length - 1; break; } } return natural < length ? factorial_cache[natural] : Infinity; } // var factorial_map = CeL.math.factorial.map(9); // generate factorial map factorial.map = function(natural) { if (!natural) natural = 9; if (factorial_cache.length <= natural && !factorial_cache_to) factorial(natural); return factorial_cache.slice(0, natural + 1); }; _.factorial = factorial; // ---------------------------------------------------------------------// /** * http://www.math.umbc.edu/~campbell/NumbThy/Class/Programming/JavaScript.html * http://aoki2.si.gunma-u.ac.jp/JavaScript/ */ /** * 得到開方數,相當於 Math.floor(Math.sqrt(number)) === Math.sqrt(number) | 0. get * integer square root. TODO: use 牛頓法 * * @param {Number} * positive number * * @return r, r^2 ≤ number < (r+1)^2 * * @see <a href="http://www.azillionmonkeys.com/qed/sqroot.html" * accessdate="2010/3/11 18:37">Paul Hsieh's Square Root page</a><br /> * <a * href="http://www.embeddedrelated.com/usenet/embedded/show/114789-1.php" * accessdate="2010/3/11 18:34">Suitable Integer Square Root Algorithm * for 32-64-Bit Integers on Inexpensive Microcontroller? | * Comp.Arch.Embedded | EmbeddedRelated.com</a> */ function floor_sqrt(number) { // return Math.sqrt(number) | 0; if (!Number.isFinite(number = Math.floor(number))) return; var g = 0, v, h, t; while ((t = g << 1) < (v = number - g * g)) { // library_namespace.debug(t + ', ' + v); h = 1; while (h * (h + t) <= v) // 因為型別轉關係,還是保留 << 而不用 *2 h <<= 1;// h *= 2; g += h >> 1;// h / 2;// } if (false) library_namespace.debug('end: ' + t + ', ' + v); return g; } _.floor_sqrt = floor_sqrt; // count digits of integer: using .digit_length() function ceil_log(number, base) { if (!number) return 0; if (!base) base = DEFAULT_BASE; // assert: base >= 2, base === (base | 0) number = Math.abs(number); // ideal return Math.ceil(base === 10 ? Math.log10(number) : base === 2 ? Math .log2(number) // TODO: base = 2^n : Math.log(number) / Math.log(base)); // slow... should use multiply by exponents // Logarithm var log = 0; if (number < ZERO_EXPONENT) { while (number < ZERO_EXPONENT) { number *= base; if (false) library_namespace.debug(number); log--; } if (number !== ZERO_EXPONENT) // 修正。 log++; } else { while (number > ZERO_EXPONENT) { // 因為可能損失 base^exp + (...) 之剩餘部分,因此不能僅採用 Math.floor(number / // base) // 但如此較費時。 number /= base; if (false) library_namespace.log(number); log++; } } return log; } // add binding _.ceil_log = ceil_log; /** {Object}all possible last 2 digits of square number */ var square_ending = Object.create(null); [ 0, 1, 4, 9, 16, 21, 24, 25, 29, 36, 41, 44, 49, 56, 61, 64, 69, 76, 81, 84, 89, 96 ].forEach(function(n) { square_ending[n] = null; }); // Squarity testing // 檢測 ({Natural}number) 是否為完全平方數 // a square number or perfect square. TODO: use 牛頓法 // is square number, n² function is_square(number) { // 快速判定 possible_square(number) // https://www.johndcook.com/blog/2008/11/17/fast-way-to-test-whether-a-number-is-a-square/ // 0x0213 = parseInt('1111110111101100', 2).toString(0x10) if (0xFDEC & (1 << (number & 0xF))) { return false; } // TRUE only if number % 16 === 0, 1, 4, 9 // %16 有4個: http://oeis.org/A023105 if (!((number % 100) in square_ending)) { return false; } number = Math.sqrt(number); return number === (number | 0) && number; // another method // https://en.wikipedia.org/wiki/Methods_of_computing_square_roots // https://gmplib.org/manual/Perfect-Square-Algorithm.html var sqrt = floor_sqrt(number); return sqrt * sqrt === number && sqrt; } _.is_square = is_square; // 檢測 ({Natural}f1 * {Natural}f2) 是否為完全平方數 function product_is_square(f1, f2) { if (f1 === f2) { return true; // e.g., r * p^2, r * p^2 } // e.g., p^2 * r, q^2 * r var product = f1 * f2; if (Number.isSafeInteger(product)) { return is_square(product); } // 除法不比較快。 if (f1 > f2) { // swap var tmp = f1; f1 = f2; f2 = tmp; } if (!Number.isSafeInteger(f2)) { library_namespace.error('The number ' + f2 + ' is NOT a safe number!'); } // assert: f1 < f2 if (f2 % f1 === 0) { // e.g., r, r * p^2 return is_square(f2 / f1); } if (is_square(f1)) { // e.g., p^2, q^2 return is_square(f2); } if (is_square(f2)) { return false; } for (var index = 0, length = Math.min(10, primes.length); index < length; index++) { var p = primes[index], p2 = p * p; tmp = false; while (f1 % p2 === 0) { f1 /= p2; tmp = true; } while (f2 % p2 === 0) { f2 /= p2; tmp = true; } if (f1 % p === 0) { while (f1 % p === 0 && f2 % p === 0) { f1 /= p; f2 /= p; tmp = true; } } if (tmp) { product = f1 * f2; if (Number.isSafeInteger(product)) { return is_square(product); } } } // 找GCD。較慢,但沒辦法。 var gcd = GCD(f1, f2); return is_square(f1 / gcd) // && is_square(f2 / gcd); } _.product_is_square = product_is_square; /** * <code> n(n+1)/2=T, n∈ℕ, n=? n(n+1)/2=T, n=? n = 1/2 (sqrt(8 T+1)-1) Reduce[(n (1 + n))/2 == T, n] n = 1/2 (sqrt(8 T+1)-1) Reduce[n(3n−1)/2==P, n] n = 1/6 (sqrt(24 P+1)+1) // hexagonal Reduce[n(2n−1)==H, n] n = 1/4 (sqrt(8 H+1)+1) </code> */ function is_triangular(natural) { // https://en.wikipedia.org/wiki/Triangular_number var sqrt = is_square(8 * natural + 1); return sqrt && sqrt % 2 === 1; } _.is_triangular = is_triangular; function is_generalized_pentagonal(generalized) { // https://en.wikipedia.org/wiki/Pentagonal_number return is_square(24 * generalized + 1); } _.is_generalized_pentagonal = is_generalized_pentagonal; function is_pentagonal(natural) { // https://en.wikipedia.org/wiki/Pentagonal_number var sqrt = is_square(24 * natural + 1); return sqrt && sqrt % 6 === 5; } _.is_pentagonal = is_pentagonal; // 素勾股數 primitive Pythagorean triple var 素勾股數 = [], last_Pythagorean_m = 2; /** * primitive Pythagorean triples 素勾股數組/素商高數組/素畢氏三元數 * * @param {Natural}limit * limit of m. 若欲改成 limit of 斜邊,請輸入斜邊長後自行 filter。 * * @returns {Array}primitive Pythagorean triple list * * @see https://en.wikipedia.org/wiki/Pythagorean_triple#Generating_a_triple * The triple generated by Euclid's formula is primitive if and only if * m and n are coprime and m − n is odd. */ function Pythagorean_list(limit) { if (last_Pythagorean_m < limit) { for (var m = last_Pythagorean_m; m < limit; m++) { for (var m2 = m * m, m_2 = 2 * m, n, n2 = n = m % 2 === 0 ? 1 : 0; // 設 m > n 互質且均是正整數,m 和 n 有一個是偶數, // 計算出來的 (a, b, c) 就是素勾股數。所有素勾股數可用列式找出 n < m; n += 2, n2 = n * n) { if (GCD(m, n) === 1) { var a = m2 - n2, b = m_2 * n, c = m2 + n2; // let a < b < c 素勾股數.push(a < b ? [ a, b, c ] : [ b, a, c ]); } } } last_Pythagorean_m = limit; } return 素勾股數; } _.Pythagorean_list = Pythagorean_list; // ---------------------------------------------------------------------// // Catalan_number[0] = 1 var Catalan_number_list = [ 1 ]; // Catalan numbers // @see https://en.wikipedia.org/wiki/Catalan_number function Catalan_number(NO) { if (NO < Catalan_number_list.length) { // use cache return Catalan_number_list[NO]; } var n = Catalan_number_list.length - 1, // this_Catalan_number = Catalan_number_list[n]; for (; n < NO; n++) { this_Catalan_number = this_Catalan_number * (4 * n + 2) / (n + 2); Catalan_number_list.push(this_Catalan_number); } return this_Catalan_number; } _.Catalan_number_list = Catalan_number_list; _.Catalan_number = Catalan_number; // ---------------------------------------------------------------------// /** {Array}Collatz_conjecture_steps[number] = steps. cache 以加快速度。 */ var Collatz_conjecture_steps_cache = [ , 1 ]; if (false) { // 此法費時 1.5 倍, 12s → 19s Collatz_conjecture_steps_cache = new Array(1000001); Collatz_conjecture_steps_cache[1] = 1; } // assert: Collatz_conjecture_steps_cache[1] === 1 (因程式判別方法需要此項) // Collatz conjecture // https://en.wikipedia.org/wiki/Collatz_conjecture function Collatz_conjecture(natural) { if (!(natural > 0)) return; var chain = [ natural ]; while (natural > 1) { chain.push(natural % 2 === 0 ? natural /= 2 : (natural = natural * 3 + 1)); } // Collatz_conjecture_steps_cache[natural] = chain.length; // return all terms return chain; } // 為計算 steps 特殊化。 // assert: CeL.Collatz_conjecture.steps(natural) === // CeL.Collatz_conjecture(natural).length function Collatz_conjecture_steps(natural) { if (!(natural > 0)) return; var chain = []; while (!(natural in Collatz_conjecture_steps_cache)) { chain.push(natural); if (natural % 2 === 0) natural /= 2; else natural = natural * 3 + 1; } var steps = Collatz_conjecture_steps_cache[natural] + chain.length, s = steps; // 紀錄 steps。 chain.forEach(function(natural) { Collatz_conjecture_steps_cache[natural] = s--; }); return steps; } /** * <code> backwards 反向: 1000000: 153 steps 999999: 259 steps 999667: 290 steps 999295: 396 steps 997823: 440 steps 970599: 458 steps 939497: 507 steps 837799: 525 steps </code> */ // search the longest chain / sequence below ((natural)) function Collatz_conjecture_longest(natural) { if (!(natural > 0)) return; // maximum steps var max_steps = 0, max_steps_natural; // brute force for (var n = 1, steps, _n; n <= natural; n++) { if (n in Collatz_conjecture_steps_cache) steps = Collatz_conjecture_steps_cache[_n = n]; else { steps = Collatz_conjecture_steps(_n = n); // 預先快速處理所有 2倍數字。採用此方法,約可增加 5% 速度。不採用此方法,n 正反向速度差不多。 while (_n * 2 <= natural) { Collatz_conjecture_steps_cache[_n *= 2] = ++steps; } } if (max_steps < steps) { library_namespace.debug(natural + ': ' + steps + ' steps', 3, 'Collatz_conjecture.longest'); max_steps = steps; max_steps_natural = _n; } } return [ max_steps_natural, max_steps ]; } _.Collatz_conjecture = Collatz_conjecture; Collatz_conjecture.steps = Collatz_conjecture_steps; Collatz_conjecture.longest = Collatz_conjecture_longest; // ---------------------------------------------------------------------// // https://en.wikipedia.org/wiki/Memoization /** {Array}質數列表。 cache / memoization 以加快速度。 */ var primes = [ 2, 3, 5 ], /** * last prime tested.<br /> * assert: last_prime_tested is ((6n ± 1)). 因此最起碼應該從 5 開始。 * * @type {Natural} */ last_prime_tested = primes.at(-1); // https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes // the sieve of Eratosthenes 篩法 function prime_sieve(limit, limit_index) { // var list = _.number_array(limit + 1, 0, Int8Array); var list = new Array(limit + 1); // 重建 re-build list (table) primes.forEach(function(prime) { for (var number = prime; number <= limit;) { // list[number += prime] = 1; list[number += prime] = true; } }); for (var n = last_prime_tested; n <= limit;) { if (list[++n]) continue; // n is prime // library_namespace.debug(n + ' is prime'); primes.push(n); if (limit_index && primes.length > limit_index) break; // 登記所有倍數。 for (var number = n; number <= limit;) { // list[number += prime] = 1; list[number += prime] = true; } } last_prime_tested = primes.at(-1); return primes; } _.prime_sieve = prime_sieve; // integer: number to test function test_is_prime(integer, index, sqrt) { // assert: Number.isInteger(integer), integer ≥ 0 index |= 0; if (!sqrt) sqrt = floor_sqrt(integer); // 採用試除法, use trial division。 // 從第一個質數一直除到 ≤ sqrt(integer) 之質數 for (var prime, length = primes.length; index < length;) { if (integer % (prime = primes[index++]) === 0) // return: prime factor found return integer === prime ? false : prime; if (sqrt < prime) return false; } // 質數列表中的質數尚無法檢測 integer。 } /** * Get the prime[index] or prime list. * * @param {Natural}[index] * prime index starts from 1 * @param {Natural}[limit] * the upper boundary of prime value * * @returns {Natural}prime value */ function prime(index, limit) { if (!(index > 0)) { if (limit > 0) { index = prime_pi(limit); return primes.slice(0, index); } return primes; } if (primes.length < index) { if (false && index - primes.length > 1e6) { // using the sieve of Eratosthenes 篩法 // 沒比較快。 // 詳細數量應採 prime π(x)。 // https://zh.wikipedia.org/wiki/%E8%B3%AA%E6%95%B8%E5%AE%9A%E7%90%86 prime_sieve(limit || index * 10, index); } else { // assert: last_prime_tested is ((6n ± 1)) /** * {Boolean}p1 === true: last_prime_tested is 6n+1.<br /> * else: last_prime_tested is 6n-1 */ var p1 = last_prime_tested % 6 === 1; for (; primes.length < index && Number.isSafeInteger(last_prime_tested);) { last_prime_tested += (p1 = !p1) ? 2 : 4; // 實質為 https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes if (!test_is_prime(last_prime_tested, 2)) primes.push(last_prime_tested); if (limit && limit <= last_prime_tested) break; } library_namespace.debug('last prime tested = ' + last_prime_tested, 2, 'prime'); } } return primes[index - 1]; } _.prime = prime; // prime #5484598 = 94906249, the biggest prime < // Math.sqrt(Number.MAX_SAFE_INTEGER) - 1. // the 2nd biggest prime is 94906247. // CeL.prime(CeL.prime_pi(Number.MAX_SAFE_INTEGER = 2^53 - 1)) = // 9007199254740881 function prime_pi(value) { value = Math.floor(Math.abs(value)); if (last_prime_tested < value) prime(value, value); // +1: index of function prime() starts from 1! return primes.search_sorted(value, true) + 1; } _.prime_pi = prime_pi; /** * Get the primorial (質數階乘, p_n#) of (NO).<br /> * * @param {Natural}NO * safe integer. 1–13 * * @returns {Natural}p_NO的質數階乘. * * @see https://en.wikipedia.org/wiki/Primorial */ function primorial(NO) { if (!(NO >= 1)) return MULTIPLICATIVE_IDENTITY; prime(NO); var index = 0, product = MULTIPLICATIVE_IDENTITY; while (index < NO) product *= primes[index++]; return product; } /** * Get the primorial (質數階乘, n#) of (natural).<br /> * * @param {Natural}natural * safe integer. 2–42 * * @returns {Natural}natural的質數階乘. * * @see https://en.wikipedia.org/wiki/Primorial */ function primorial_natural(natural) { // 2: primes[0] if (!(natural >= 2)) return MULTIPLICATIVE_IDENTITY; var index = 0, length = prime_pi(natural), product = MULTIPLICATIVE_IDENTITY; while (index < length) product *= primes[index++]; return product; } _.primorial = primorial; primorial.natural = primorial_natural; // return multiplicand × multiplier % modulus // assert: 三者皆為 natural number, and Number.isSafeInteger() is OK. // max(multiplicand, multiplier) < modulus. 否則會出現錯誤! function multiply_modulo(multiplicand, multiplier, modulus) { var quotient = multiplicand * multiplier; if (Number.isSafeInteger(quotient)) return quotient % modulus; // 避免 overflow if (multiplicand > multiplier) quotient = multiplicand, multiplicand = multiplier, multiplier = quotient; if (quotient === 1) throw new Error('Please use data.math.integer instead!'); quotient = Math.floor(modulus / multiplicand); quotient = (multiplicand * (multiplier % quotient) - Math .floor(multiplier / quotient) * (modulus % multiplicand)) % modulus; return quotient; } _.multiply_modulo = multiply_modulo; // return integer ^ exponent % modulus // assert: 三者皆為 natural number, and Number.isSafeInteger() is OK. 否則會出現錯誤! function power_modulo(integer, exponent, modulus) { for (var remainder = 1, power = integer % modulus;;) { if (exponent % 2 === 1) remainder = multiply_modulo(remainder, power, modulus); if ((exponent >>= 1) === 0) return remainder; if ((power = multiply_modulo(power, power, modulus)) === 1) return remainder; } } _.power_modulo = power_modulo; function power_modulo(natural, exponent, modulus) { var remainder = 1; for (natural %= modulus; exponent > 0; natural = natural * natural % modulus, exponent >>= 1) if (exponent % 2 === 1) remainder = remainder * natural % modulus; return remainder; } _.power_modulo = power_modulo; // Miller–Rabin primality test // return true: is composite, undefined: probable prime (PRP) / invalid // number // https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test function Miller_Rabin(natural, times) { if (natural % 2 === 0) return natural !== 2; if (!(natural < sqrt_max_integer) || natural < 2) return; var n_1 = natural - 1,