UNPKG

cakemail-mcp-server

Version:

Enterprise MCP server for Cakemail API integration with Claude AI - includes comprehensive template management, list management, sub-account management, BEEeditor visual email design, and advanced analytics

168 lines 5.73 kB
/** * Behavioral Pattern Recognition Module for Cakemail Campaign Logs * Analyzes subscriber engagement patterns and provides actionable insights */ export declare enum EngagementLevel { HIGHLY_ENGAGED = "highly_engaged", MODERATELY_ENGAGED = "moderately_engaged", LOW_ENGAGEMENT = "low_engagement", DECLINING = "declining", INACTIVE = "inactive", AT_RISK = "at_risk" } export declare enum BehaviorPattern { CONSISTENT_OPENER = "consistent_opener", SELECTIVE_CLICKER = "selective_clicker", MOBILE_PREFERRER = "mobile_preferrer", WEEKEND_ENGAGER = "weekend_engager", EARLY_BIRD = "early_bird", NIGHT_OWL = "night_owl", BINGE_READER = "binge_reader", QUICK_SCANNER = "quick_scanner", UNSUBSCRIBE_RISK = "unsubscribe_risk", LOYAL_SUBSCRIBER = "loyal_subscriber", CONTENT_SKIMMER = "content_skimmer" } export interface EngagementMetrics { total_campaigns_sent: number; total_opens: number; total_clicks: number; unique_opens: number; unique_clicks: number; open_rate: number; click_rate: number; click_to_open_rate: number; average_time_to_open?: number; average_time_to_click?: number; engagement_trend: 'increasing' | 'stable' | 'declining'; last_engagement_date?: string; days_since_last_engagement?: number; engagement_consistency: number; peak_engagement_days: string[]; avg_session_duration?: number; } export interface BehavioralInsight { pattern: BehaviorPattern; confidence: number; description: string; recommendation: string; supporting_data: Record<string, any>; impact_score: number; } export interface ContactBehaviorProfile { contact_id: number; email: string; engagement_level: EngagementLevel; engagement_metrics: EngagementMetrics; behavioral_patterns: BehavioralInsight[]; lifecycle_stage: string; predicted_actions: Record<string, number>; optimal_send_time?: string; content_preferences: Record<string, number>; risk_scores: Record<string, number>; personalization_opportunities: string[]; segment_recommendations: string[]; } export interface AggregateInsights { engagement_level_distribution: Record<string, number>; average_open_rate: number; average_click_rate: number; most_common_behavioral_patterns: Array<[string, number]>; lifecycle_stage_distribution: Record<string, number>; total_at_risk_contacts: number; high_value_contacts: number; optimal_send_times: Record<string, number>; content_performance: Record<string, number>; device_preferences: Record<string, number>; geographic_patterns?: Record<string, any>; seasonal_trends?: Record<string, any>; } export interface BehavioralAnalysisResult { analysis_metadata: { total_contacts_analyzed: number; total_log_entries: number; analysis_period: { start?: string; end?: string; duration_days?: number; }; generated_at: string; performance_metrics: { processing_time_ms: number; memory_usage_mb?: number; }; }; contact_profiles: Record<string, ContactBehaviorProfile>; aggregate_insights: AggregateInsights; anomalies: Array<{ type: string; contact_id?: number; description: string; severity: 'low' | 'medium' | 'high' | 'positive'; metrics?: Record<string, any>; contact_ids?: number[]; }>; recommendations: Array<{ type: string; priority: 'low' | 'medium' | 'high'; description: string; action: string; expected_impact: string; affected_contacts?: number; estimated_roi?: string; }>; predictive_insights: { churn_predictions: Array<{ contact_id: number; churn_probability: number; days_to_churn?: number; intervention_recommendations: string[]; }>; engagement_forecasts: Record<string, number>; optimal_campaigns: Array<{ segment: string; recommended_timing: string; content_type: string; expected_performance: Record<string, number>; }>; }; } export declare class BehavioralPatternRecognizer { private minCampaignsForAnalysis; private debugMode; constructor(options?: { minCampaignsForAnalysis?: number; debugMode?: boolean; }); /** * Main analysis function that processes campaign logs and returns behavioral insights */ analyzeCampaignLogs(logsData: any[]): Promise<BehavioralAnalysisResult>; private groupLogsByContact; private analyzeContactBehavior; private calculateEngagementMetrics; private classifyEngagementLevel; private identifyBehavioralPatterns; private calculateEngagementTrend; private calculateEngagementConsistency; private findPeakEngagementDays; private determineLifecycleStage; private predictFutureActions; private findOptimalSendTime; private analyzeTimePatterns; private analyzeContentPreferences; private calculateRiskScores; private generatePersonalizationOpportunities; private generateSegmentRecommendations; private generateAggregateInsights; private detectAnomalies; private generateRecommendations; private generatePredictiveInsights; private getAnalysisPeriod; private getMemoryUsage; } export declare function analyzeBehavioralPatterns(logsData: any[], options?: { minCampaignsForAnalysis?: number; debugMode?: boolean; }): Promise<BehavioralAnalysisResult>; //# sourceMappingURL=behavioral-pattern-recognition.d.ts.map