c8y-openlayer
Version:
This module is designed to help integrate Openlayer with Cumulocity IoT
287 lines (264 loc) • 9.88 kB
JavaScript
/**
* @license
* Latitude/longitude spherical geodesy formulae taken from
* http://www.movable-type.co.uk/scripts/latlong.html
* Licensed under CC-BY-3.0.
*/
import _ol_math_ from './math.js';
import _ol_geom_GeometryType_ from './geom/geometrytype.js';
/**
* @classdesc
* Class to create objects that can be used with {@link
* ol.geom.Polygon.circular}.
*
* For example to create a sphere whose radius is equal to the semi-major
* axis of the WGS84 ellipsoid:
*
* ```js
* var wgs84Sphere= new ol.Sphere(6378137);
* ```
*
* @constructor
* @param {number} radius Radius.
* @api
*/
var _ol_Sphere_ = function(radius) {
/**
* @type {number}
*/
this.radius = radius;
};
/**
* Returns the geodesic area for a list of coordinates.
*
* [Reference](https://trs-new.jpl.nasa.gov/handle/2014/40409)
* Robert. G. Chamberlain and William H. Duquette, "Some Algorithms for
* Polygons on a Sphere", JPL Publication 07-03, Jet Propulsion
* Laboratory, Pasadena, CA, June 2007
*
* @param {Array.<ol.Coordinate>} coordinates List of coordinates of a linear
* ring. If the ring is oriented clockwise, the area will be positive,
* otherwise it will be negative.
* @return {number} Area.
* @api
*/
_ol_Sphere_.prototype.geodesicArea = function(coordinates) {
return _ol_Sphere_.getArea_(coordinates, this.radius);
};
/**
* Returns the distance from c1 to c2 using the haversine formula.
*
* @param {ol.Coordinate} c1 Coordinate 1.
* @param {ol.Coordinate} c2 Coordinate 2.
* @return {number} Haversine distance.
* @api
*/
_ol_Sphere_.prototype.haversineDistance = function(c1, c2) {
return _ol_Sphere_.getDistance_(c1, c2, this.radius);
};
/**
* Returns the coordinate at the given distance and bearing from `c1`.
*
* @param {ol.Coordinate} c1 The origin point (`[lon, lat]` in degrees).
* @param {number} distance The great-circle distance between the origin
* point and the target point.
* @param {number} bearing The bearing (in radians).
* @return {ol.Coordinate} The target point.
*/
_ol_Sphere_.prototype.offset = function(c1, distance, bearing) {
var lat1 = _ol_math_.toRadians(c1[1]);
var lon1 = _ol_math_.toRadians(c1[0]);
var dByR = distance / this.radius;
var lat = Math.asin(
Math.sin(lat1) * Math.cos(dByR) +
Math.cos(lat1) * Math.sin(dByR) * Math.cos(bearing));
var lon = lon1 + Math.atan2(
Math.sin(bearing) * Math.sin(dByR) * Math.cos(lat1),
Math.cos(dByR) - Math.sin(lat1) * Math.sin(lat));
return [_ol_math_.toDegrees(lon), _ol_math_.toDegrees(lat)];
};
/**
* The mean Earth radius (1/3 * (2a + b)) for the WGS84 ellipsoid.
* https://en.wikipedia.org/wiki/Earth_radius#Mean_radius
* @type {number}
*/
_ol_Sphere_.DEFAULT_RADIUS = 6371008.8;
/**
* Get the spherical length of a geometry. This length is the sum of the
* great circle distances between coordinates. For polygons, the length is
* the sum of all rings. For points, the length is zero. For multi-part
* geometries, the length is the sum of the length of each part.
* @param {ol.geom.Geometry} geometry A geometry.
* @param {olx.SphereMetricOptions=} opt_options Options for the length
* calculation. By default, geometries are assumed to be in 'EPSG:3857'.
* You can change this by providing a `projection` option.
* @return {number} The spherical length (in meters).
* @api
*/
_ol_Sphere_.getLength = function(geometry, opt_options) {
var options = opt_options || {};
var radius = options.radius || _ol_Sphere_.DEFAULT_RADIUS;
var projection = options.projection || 'EPSG:3857';
geometry = geometry.clone().transform(projection, 'EPSG:4326');
var type = geometry.getType();
var length = 0;
var coordinates, coords, i, ii, j, jj;
switch (type) {
case _ol_geom_GeometryType_.POINT:
case _ol_geom_GeometryType_.MULTI_POINT: {
break;
}
case _ol_geom_GeometryType_.LINE_STRING:
case _ol_geom_GeometryType_.LINEAR_RING: {
coordinates = /** @type {ol.geom.SimpleGeometry} */ (geometry).getCoordinates();
length = _ol_Sphere_.getLength_(coordinates, radius);
break;
}
case _ol_geom_GeometryType_.MULTI_LINE_STRING:
case _ol_geom_GeometryType_.POLYGON: {
coordinates = /** @type {ol.geom.SimpleGeometry} */ (geometry).getCoordinates();
for (i = 0, ii = coordinates.length; i < ii; ++i) {
length += _ol_Sphere_.getLength_(coordinates[i], radius);
}
break;
}
case _ol_geom_GeometryType_.MULTI_POLYGON: {
coordinates = /** @type {ol.geom.SimpleGeometry} */ (geometry).getCoordinates();
for (i = 0, ii = coordinates.length; i < ii; ++i) {
coords = coordinates[i];
for (j = 0, jj = coords.length; j < jj; ++j) {
length += _ol_Sphere_.getLength_(coords[j], radius);
}
}
break;
}
case _ol_geom_GeometryType_.GEOMETRY_COLLECTION: {
var geometries = /** @type {ol.geom.GeometryCollection} */ (geometry).getGeometries();
for (i = 0, ii = geometries.length; i < ii; ++i) {
length += _ol_Sphere_.getLength(geometries[i], opt_options);
}
break;
}
default: {
throw new Error('Unsupported geometry type: ' + type);
}
}
return length;
};
/**
* Get the cumulative great circle length of linestring coordinates (geographic).
* @param {Array} coordinates Linestring coordinates.
* @param {number} radius The sphere radius to use.
* @return {number} The length (in meters).
*/
_ol_Sphere_.getLength_ = function(coordinates, radius) {
var length = 0;
for (var i = 0, ii = coordinates.length; i < ii - 1; ++i) {
length += _ol_Sphere_.getDistance_(coordinates[i], coordinates[i + 1], radius);
}
return length;
};
/**
* Get the great circle distance between two geographic coordinates.
* @param {Array} c1 Starting coordinate.
* @param {Array} c2 Ending coordinate.
* @param {number} radius The sphere radius to use.
* @return {number} The great circle distance between the points (in meters).
*/
_ol_Sphere_.getDistance_ = function(c1, c2, radius) {
var lat1 = _ol_math_.toRadians(c1[1]);
var lat2 = _ol_math_.toRadians(c2[1]);
var deltaLatBy2 = (lat2 - lat1) / 2;
var deltaLonBy2 = _ol_math_.toRadians(c2[0] - c1[0]) / 2;
var a = Math.sin(deltaLatBy2) * Math.sin(deltaLatBy2) +
Math.sin(deltaLonBy2) * Math.sin(deltaLonBy2) *
Math.cos(lat1) * Math.cos(lat2);
return 2 * radius * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
};
/**
* Get the spherical area of a geometry. This is the area (in meters) assuming
* that polygon edges are segments of great circles on a sphere.
* @param {ol.geom.Geometry} geometry A geometry.
* @param {olx.SphereMetricOptions=} opt_options Options for the area
* calculation. By default, geometries are assumed to be in 'EPSG:3857'.
* You can change this by providing a `projection` option.
* @return {number} The spherical area (in square meters).
* @api
*/
_ol_Sphere_.getArea = function(geometry, opt_options) {
var options = opt_options || {};
var radius = options.radius || _ol_Sphere_.DEFAULT_RADIUS;
var projection = options.projection || 'EPSG:3857';
geometry = geometry.clone().transform(projection, 'EPSG:4326');
var type = geometry.getType();
var area = 0;
var coordinates, coords, i, ii, j, jj;
switch (type) {
case _ol_geom_GeometryType_.POINT:
case _ol_geom_GeometryType_.MULTI_POINT:
case _ol_geom_GeometryType_.LINE_STRING:
case _ol_geom_GeometryType_.MULTI_LINE_STRING:
case _ol_geom_GeometryType_.LINEAR_RING: {
break;
}
case _ol_geom_GeometryType_.POLYGON: {
coordinates = /** @type {ol.geom.Polygon} */ (geometry).getCoordinates();
area = Math.abs(_ol_Sphere_.getArea_(coordinates[0], radius));
for (i = 1, ii = coordinates.length; i < ii; ++i) {
area -= Math.abs(_ol_Sphere_.getArea_(coordinates[i], radius));
}
break;
}
case _ol_geom_GeometryType_.MULTI_POLYGON: {
coordinates = /** @type {ol.geom.SimpleGeometry} */ (geometry).getCoordinates();
for (i = 0, ii = coordinates.length; i < ii; ++i) {
coords = coordinates[i];
area += Math.abs(_ol_Sphere_.getArea_(coords[0], radius));
for (j = 1, jj = coords.length; j < jj; ++j) {
area -= Math.abs(_ol_Sphere_.getArea_(coords[j], radius));
}
}
break;
}
case _ol_geom_GeometryType_.GEOMETRY_COLLECTION: {
var geometries = /** @type {ol.geom.GeometryCollection} */ (geometry).getGeometries();
for (i = 0, ii = geometries.length; i < ii; ++i) {
area += _ol_Sphere_.getArea(geometries[i], opt_options);
}
break;
}
default: {
throw new Error('Unsupported geometry type: ' + type);
}
}
return area;
};
/**
* Returns the spherical area for a list of coordinates.
*
* [Reference](https://trs-new.jpl.nasa.gov/handle/2014/40409)
* Robert. G. Chamberlain and William H. Duquette, "Some Algorithms for
* Polygons on a Sphere", JPL Publication 07-03, Jet Propulsion
* Laboratory, Pasadena, CA, June 2007
*
* @param {Array.<ol.Coordinate>} coordinates List of coordinates of a linear
* ring. If the ring is oriented clockwise, the area will be positive,
* otherwise it will be negative.
* @param {number} radius The sphere radius.
* @return {number} Area (in square meters).
*/
_ol_Sphere_.getArea_ = function(coordinates, radius) {
var area = 0, len = coordinates.length;
var x1 = coordinates[len - 1][0];
var y1 = coordinates[len - 1][1];
for (var i = 0; i < len; i++) {
var x2 = coordinates[i][0], y2 = coordinates[i][1];
area += _ol_math_.toRadians(x2 - x1) *
(2 + Math.sin(_ol_math_.toRadians(y1)) +
Math.sin(_ol_math_.toRadians(y2)));
x1 = x2;
y1 = y2;
}
return area * radius * radius / 2.0;
};
export default _ol_Sphere_;