UNPKG

bytev-charts

Version:

基于echarts和JavaScript及ES6封装的一个可以直接调用的图表组件库,内置主题设计,简单快捷,且支持用户自定义配置; npm 安装方式: npm install bytev-charts 若启动提示还需额外install插件,则运行 npm install @babel/runtime-corejs2 即可;

119 lines (105 loc) 5.6 kB
import "core-js/modules/es.function.name.js"; import _Object$assign from "@babel/runtime-corejs2/core-js/object/assign"; import _Object$create from "@babel/runtime-corejs2/core-js/object/create"; import { AdditiveBlending, LinearFilter, RGBAFormat, ShaderMaterial, UniformsUtils, WebGLRenderTarget } from "../../../build/three.module.js"; import { Pass } from "../postprocessing/Pass.js"; import { CopyShader } from "../shaders/CopyShader.js"; /** * * Supersample Anti-Aliasing Render Pass * * This manual approach to SSAA re-renders the scene ones for each sample with camera jitter and accumulates the results. * * References: https://en.wikipedia.org/wiki/Supersampling * */ var SSAARenderPass = function SSAARenderPass(scene, camera, clearColor, clearAlpha) { Pass.call(this); this.scene = scene; this.camera = camera; this.sampleLevel = 4; // specified as n, where the number of samples is 2^n, so sampleLevel = 4, is 2^4 samples, 16. this.unbiased = true; // as we need to clear the buffer in this pass, clearColor must be set to something, defaults to black. this.clearColor = clearColor !== undefined ? clearColor : 0x000000; this.clearAlpha = clearAlpha !== undefined ? clearAlpha : 0; if (CopyShader === undefined) console.error("SSAARenderPass relies on CopyShader"); var copyShader = CopyShader; this.copyUniforms = UniformsUtils.clone(copyShader.uniforms); this.copyMaterial = new ShaderMaterial({ uniforms: this.copyUniforms, vertexShader: copyShader.vertexShader, fragmentShader: copyShader.fragmentShader, premultipliedAlpha: true, transparent: true, blending: AdditiveBlending, depthTest: false, depthWrite: false }); this.fsQuad = new Pass.FullScreenQuad(this.copyMaterial); }; SSAARenderPass.prototype = _Object$assign(_Object$create(Pass.prototype), { constructor: SSAARenderPass, dispose: function dispose() { if (this.sampleRenderTarget) { this.sampleRenderTarget.dispose(); this.sampleRenderTarget = null; } }, setSize: function setSize(width, height) { if (this.sampleRenderTarget) this.sampleRenderTarget.setSize(width, height); }, render: function render(renderer, writeBuffer, readBuffer) { if (!this.sampleRenderTarget) { this.sampleRenderTarget = new WebGLRenderTarget(readBuffer.width, readBuffer.height, { minFilter: LinearFilter, magFilter: LinearFilter, format: RGBAFormat }); this.sampleRenderTarget.texture.name = "SSAARenderPass.sample"; } var jitterOffsets = SSAARenderPass.JitterVectors[Math.max(0, Math.min(this.sampleLevel, 5))]; var autoClear = renderer.autoClear; renderer.autoClear = false; var oldClearColor = renderer.getClearColor().getHex(); var oldClearAlpha = renderer.getClearAlpha(); var baseSampleWeight = 1.0 / jitterOffsets.length; var roundingRange = 1 / 32; this.copyUniforms["tDiffuse"].value = this.sampleRenderTarget.texture; var width = readBuffer.width, height = readBuffer.height; // render the scene multiple times, each slightly jitter offset from the last and accumulate the results. for (var i = 0; i < jitterOffsets.length; i++) { var jitterOffset = jitterOffsets[i]; if (this.camera.setViewOffset) { this.camera.setViewOffset(width, height, jitterOffset[0] * 0.0625, jitterOffset[1] * 0.0625, // 0.0625 = 1 / 16 width, height); } var sampleWeight = baseSampleWeight; if (this.unbiased) { // the theory is that equal weights for each sample lead to an accumulation of rounding errors. // The following equation varies the sampleWeight per sample so that it is uniformly distributed // across a range of values whose rounding errors cancel each other out. var uniformCenteredDistribution = -0.5 + (i + 0.5) / jitterOffsets.length; sampleWeight += roundingRange * uniformCenteredDistribution; } this.copyUniforms["opacity"].value = sampleWeight; renderer.setClearColor(this.clearColor, this.clearAlpha); renderer.setRenderTarget(this.sampleRenderTarget); renderer.clear(); renderer.render(this.scene, this.camera); renderer.setRenderTarget(this.renderToScreen ? null : writeBuffer); if (i === 0) { renderer.setClearColor(0x000000, 0.0); renderer.clear(); } this.fsQuad.render(renderer); } if (this.camera.clearViewOffset) this.camera.clearViewOffset(); renderer.autoClear = autoClear; renderer.setClearColor(oldClearColor, oldClearAlpha); } }); // These jitter vectors are specified in integers because it is easier. // I am assuming a [-8,8) integer grid, but it needs to be mapped onto [-0.5,0.5) // before being used, thus these integers need to be scaled by 1/16. // // Sample patterns reference: https://msdn.microsoft.com/en-us/library/windows/desktop/ff476218%28v=vs.85%29.aspx?f=255&MSPPError=-2147217396 SSAARenderPass.JitterVectors = [[[0, 0]], [[4, 4], [-4, -4]], [[-2, -6], [6, -2], [-6, 2], [2, 6]], [[1, -3], [-1, 3], [5, 1], [-3, -5], [-5, 5], [-7, -1], [3, 7], [7, -7]], [[1, 1], [-1, -3], [-3, 2], [4, -1], [-5, -2], [2, 5], [5, 3], [3, -5], [-2, 6], [0, -7], [-4, -6], [-6, 4], [-8, 0], [7, -4], [6, 7], [-7, -8]], [[-4, -7], [-7, -5], [-3, -5], [-5, -4], [-1, -4], [-2, -2], [-6, -1], [-4, 0], [-7, 1], [-1, 2], [-6, 3], [-3, 3], [-7, 6], [-3, 6], [-5, 7], [-1, 7], [5, -7], [1, -6], [6, -5], [4, -4], [2, -3], [7, -2], [1, -1], [4, -1], [2, 1], [6, 2], [0, 4], [4, 4], [2, 5], [7, 5], [5, 6], [3, 7]]]; export { SSAARenderPass };