bytev-charts
Version:
基于echarts和JavaScript及ES6封装的一个可以直接调用的图表组件库,内置主题设计,简单快捷,且支持用户自定义配置; npm 安装方式: npm install bytev-charts 若启动提示还需额外install插件,则运行 npm install @babel/runtime-corejs2 即可;
79 lines (78 loc) • 10.1 kB
JavaScript
import "core-js/modules/es.array.join.js";
console.warn("THREE.VolumeShader: As part of the transition to ES6 Modules, the files in 'examples/js' were deprecated in May 2020 (r117) and will be deleted in December 2020 (r124). You can find more information about developing using ES6 Modules in https://threejs.org/docs/#manual/en/introduction/Installation.");
/**
* Shaders to render 3D volumes using raycasting.
* The applied techniques are based on similar implementations in the Visvis and Vispy projects.
* This is not the only approach, therefore it's marked 1.
*/
THREE.VolumeRenderShader1 = {
uniforms: {
"u_size": {
value: new THREE.Vector3(1, 1, 1)
},
"u_renderstyle": {
value: 0
},
"u_renderthreshold": {
value: 0.5
},
"u_clim": {
value: new THREE.Vector2(1, 1)
},
"u_data": {
value: null
},
"u_cmdata": {
value: null
}
},
vertexShader: [" varying vec4 v_nearpos;", " varying vec4 v_farpos;", " varying vec3 v_position;", " void main() {", // Prepare transforms to map to "camera view". See also:
// https://threejs.org/docs/#api/renderers/webgl/WebGLProgram
" mat4 viewtransformf = modelViewMatrix;", " mat4 viewtransformi = inverse(modelViewMatrix);", // Project local vertex coordinate to camera position. Then do a step
// backward (in cam coords) to the near clipping plane, and project back. Do
// the same for the far clipping plane. This gives us all the information we
// need to calculate the ray and truncate it to the viewing cone.
" vec4 position4 = vec4(position, 1.0);", " vec4 pos_in_cam = viewtransformf * position4;", // Intersection of ray and near clipping plane (z = -1 in clip coords)
" pos_in_cam.z = -pos_in_cam.w;", " v_nearpos = viewtransformi * pos_in_cam;", // Intersection of ray and far clipping plane (z = +1 in clip coords)
" pos_in_cam.z = pos_in_cam.w;", " v_farpos = viewtransformi * pos_in_cam;", // Set varyings and output pos
" v_position = position;", " gl_Position = projectionMatrix * viewMatrix * modelMatrix * position4;", " }"].join("\n"),
fragmentShader: [" precision highp float;", " precision mediump sampler3D;", " uniform vec3 u_size;", " uniform int u_renderstyle;", " uniform float u_renderthreshold;", " uniform vec2 u_clim;", " uniform sampler3D u_data;", " uniform sampler2D u_cmdata;", " varying vec3 v_position;", " varying vec4 v_nearpos;", " varying vec4 v_farpos;", // The maximum distance through our rendering volume is sqrt(3).
" const int MAX_STEPS = 887; // 887 for 512^3, 1774 for 1024^3", " const int REFINEMENT_STEPS = 4;", " const float relative_step_size = 1.0;", " const vec4 ambient_color = vec4(0.2, 0.4, 0.2, 1.0);", " const vec4 diffuse_color = vec4(0.8, 0.2, 0.2, 1.0);", " const vec4 specular_color = vec4(1.0, 1.0, 1.0, 1.0);", " const float shininess = 40.0;", " void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);", " void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);", " float sample1(vec3 texcoords);", " vec4 apply_colormap(float val);", " vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray);", " void main() {", // Normalize clipping plane info
" vec3 farpos = v_farpos.xyz / v_farpos.w;", " vec3 nearpos = v_nearpos.xyz / v_nearpos.w;", // Calculate unit vector pointing in the view direction through this fragment.
" vec3 view_ray = normalize(nearpos.xyz - farpos.xyz);", // Compute the (negative) distance to the front surface or near clipping plane.
// v_position is the back face of the cuboid, so the initial distance calculated in the dot
// product below is the distance from near clip plane to the back of the cuboid
" float distance = dot(nearpos - v_position, view_ray);", " distance = max(distance, min((-0.5 - v_position.x) / view_ray.x,", " (u_size.x - 0.5 - v_position.x) / view_ray.x));", " distance = max(distance, min((-0.5 - v_position.y) / view_ray.y,", " (u_size.y - 0.5 - v_position.y) / view_ray.y));", " distance = max(distance, min((-0.5 - v_position.z) / view_ray.z,", " (u_size.z - 0.5 - v_position.z) / view_ray.z));", // Now we have the starting position on the front surface
" vec3 front = v_position + view_ray * distance;", // Decide how many steps to take
" int nsteps = int(-distance / relative_step_size + 0.5);", " if ( nsteps < 1 )", " discard;", // Get starting location and step vector in texture coordinates
" vec3 step = ((v_position - front) / u_size) / float(nsteps);", " vec3 start_loc = front / u_size;", // For testing: show the number of steps. This helps to establish
// whether the rays are correctly oriented
//'gl_FragColor = vec4(0.0, float(nsteps) / 1.0 / u_size.x, 1.0, 1.0);',
//'return;',
" if (u_renderstyle == 0)", " cast_mip(start_loc, step, nsteps, view_ray);", " else if (u_renderstyle == 1)", " cast_iso(start_loc, step, nsteps, view_ray);", " if (gl_FragColor.a < 0.05)", " discard;", " }", " float sample1(vec3 texcoords) {", " /* Sample float value from a 3D texture. Assumes intensity data. */", " return texture(u_data, texcoords.xyz).r;", " }", " vec4 apply_colormap(float val) {", " val = (val - u_clim[0]) / (u_clim[1] - u_clim[0]);", " return texture2D(u_cmdata, vec2(val, 0.5));", " }", " void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {", " float max_val = -1e6;", " int max_i = 100;", " vec3 loc = start_loc;", // Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
// non-constant expression. So we use a hard-coded max, and an additional condition
// inside the loop.
" for (int iter=0; iter<MAX_STEPS; iter++) {", " if (iter >= nsteps)", " break;", // Sample from the 3D texture
" float val = sample1(loc);", // Apply MIP operation
" if (val > max_val) {", " max_val = val;", " max_i = iter;", " }", // Advance location deeper into the volume
" loc += step;", " }", // Refine location, gives crispier images
" vec3 iloc = start_loc + step * (float(max_i) - 0.5);", " vec3 istep = step / float(REFINEMENT_STEPS);", " for (int i=0; i<REFINEMENT_STEPS; i++) {", " max_val = max(max_val, sample1(iloc));", " iloc += istep;", " }", // Resolve final color
" gl_FragColor = apply_colormap(max_val);", " }", " void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {", " gl_FragColor = vec4(0.0); // init transparent", " vec4 color3 = vec4(0.0); // final color", " vec3 dstep = 1.5 / u_size; // step to sample derivative", " vec3 loc = start_loc;", " float low_threshold = u_renderthreshold - 0.02 * (u_clim[1] - u_clim[0]);", // Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
// non-constant expression. So we use a hard-coded max, and an additional condition
// inside the loop.
" for (int iter=0; iter<MAX_STEPS; iter++) {", " if (iter >= nsteps)", " break;", // Sample from the 3D texture
" float val = sample1(loc);", " if (val > low_threshold) {", // Take the last interval in smaller steps
" vec3 iloc = loc - 0.5 * step;", " vec3 istep = step / float(REFINEMENT_STEPS);", " for (int i=0; i<REFINEMENT_STEPS; i++) {", " val = sample1(iloc);", " if (val > u_renderthreshold) {", " gl_FragColor = add_lighting(val, iloc, dstep, view_ray);", " return;", " }", " iloc += istep;", " }", " }", // Advance location deeper into the volume
" loc += step;", " }", " }", " vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray)", " {", // Calculate color by incorporating lighting
// View direction
" vec3 V = normalize(view_ray);", // calculate normal vector from gradient
" vec3 N;", " float val1, val2;", " val1 = sample1(loc + vec3(-step[0], 0.0, 0.0));", " val2 = sample1(loc + vec3(+step[0], 0.0, 0.0));", " N[0] = val1 - val2;", " val = max(max(val1, val2), val);", " val1 = sample1(loc + vec3(0.0, -step[1], 0.0));", " val2 = sample1(loc + vec3(0.0, +step[1], 0.0));", " N[1] = val1 - val2;", " val = max(max(val1, val2), val);", " val1 = sample1(loc + vec3(0.0, 0.0, -step[2]));", " val2 = sample1(loc + vec3(0.0, 0.0, +step[2]));", " N[2] = val1 - val2;", " val = max(max(val1, val2), val);", " float gm = length(N); // gradient magnitude", " N = normalize(N);", // Flip normal so it points towards viewer
" float Nselect = float(dot(N, V) > 0.0);", " N = (2.0 * Nselect - 1.0) * N; // == Nselect * N - (1.0-Nselect)*N;", // Init colors
" vec4 ambient_color = vec4(0.0, 0.0, 0.0, 0.0);", " vec4 diffuse_color = vec4(0.0, 0.0, 0.0, 0.0);", " vec4 specular_color = vec4(0.0, 0.0, 0.0, 0.0);", // note: could allow multiple lights
" for (int i=0; i<1; i++)", " {", // Get light direction (make sure to prevent zero devision)
" vec3 L = normalize(view_ray); //lightDirs[i];", " float lightEnabled = float( length(L) > 0.0 );", " L = normalize(L + (1.0 - lightEnabled));", // Calculate lighting properties
" float lambertTerm = clamp(dot(N, L), 0.0, 1.0);", " vec3 H = normalize(L+V); // Halfway vector", " float specularTerm = pow(max(dot(H, N), 0.0), shininess);", // Calculate mask
" float mask1 = lightEnabled;", // Calculate colors
" ambient_color += mask1 * ambient_color; // * gl_LightSource[i].ambient;", " diffuse_color += mask1 * lambertTerm;", " specular_color += mask1 * specularTerm * specular_color;", " }", // Calculate final color by componing different components
" vec4 final_color;", " vec4 color = apply_colormap(val);", " final_color = color * (ambient_color + diffuse_color) + specular_color;", " final_color.a = color.a;", " return final_color;", " }"].join("\n")
};