bytev-charts
Version:
基于echarts和JavaScript及ES6封装的一个可以直接调用的图表组件库,内置主题设计,简单快捷,且支持用户自定义配置; npm 安装方式: npm install bytev-charts 若启动提示还需额外install插件,则运行 npm install @babel/runtime-corejs2 即可;
116 lines (102 loc) • 5.74 kB
JavaScript
import "core-js/modules/es.function.name.js";
import _Object$assign from "@babel/runtime-corejs2/core-js/object/assign";
import _Object$create from "@babel/runtime-corejs2/core-js/object/create";
console.warn("THREE.SSAARenderPass: As part of the transition to ES6 Modules, the files in 'examples/js' were deprecated in May 2020 (r117) and will be deleted in December 2020 (r124). You can find more information about developing using ES6 Modules in https://threejs.org/docs/#manual/en/introduction/Installation.");
/**
*
* Supersample Anti-Aliasing Render Pass
*
* This manual approach to SSAA re-renders the scene ones for each sample with camera jitter and accumulates the results.
*
* References: https://en.wikipedia.org/wiki/Supersampling
*
*/
THREE.SSAARenderPass = function (scene, camera, clearColor, clearAlpha) {
THREE.Pass.call(this);
this.scene = scene;
this.camera = camera;
this.sampleLevel = 4; // specified as n, where the number of samples is 2^n, so sampleLevel = 4, is 2^4 samples, 16.
this.unbiased = true; // as we need to clear the buffer in this pass, clearColor must be set to something, defaults to black.
this.clearColor = clearColor !== undefined ? clearColor : 0x000000;
this.clearAlpha = clearAlpha !== undefined ? clearAlpha : 0;
if (THREE.CopyShader === undefined) console.error("THREE.SSAARenderPass relies on THREE.CopyShader");
var copyShader = THREE.CopyShader;
this.copyUniforms = THREE.UniformsUtils.clone(copyShader.uniforms);
this.copyMaterial = new THREE.ShaderMaterial({
uniforms: this.copyUniforms,
vertexShader: copyShader.vertexShader,
fragmentShader: copyShader.fragmentShader,
premultipliedAlpha: true,
transparent: true,
blending: THREE.AdditiveBlending,
depthTest: false,
depthWrite: false
});
this.fsQuad = new THREE.Pass.FullScreenQuad(this.copyMaterial);
};
THREE.SSAARenderPass.prototype = _Object$assign(_Object$create(THREE.Pass.prototype), {
constructor: THREE.SSAARenderPass,
dispose: function dispose() {
if (this.sampleRenderTarget) {
this.sampleRenderTarget.dispose();
this.sampleRenderTarget = null;
}
},
setSize: function setSize(width, height) {
if (this.sampleRenderTarget) this.sampleRenderTarget.setSize(width, height);
},
render: function render(renderer, writeBuffer, readBuffer) {
if (!this.sampleRenderTarget) {
this.sampleRenderTarget = new THREE.WebGLRenderTarget(readBuffer.width, readBuffer.height, {
minFilter: THREE.LinearFilter,
magFilter: THREE.LinearFilter,
format: THREE.RGBAFormat
});
this.sampleRenderTarget.texture.name = "SSAARenderPass.sample";
}
var jitterOffsets = THREE.SSAARenderPass.JitterVectors[Math.max(0, Math.min(this.sampleLevel, 5))];
var autoClear = renderer.autoClear;
renderer.autoClear = false;
var oldClearColor = renderer.getClearColor().getHex();
var oldClearAlpha = renderer.getClearAlpha();
var baseSampleWeight = 1.0 / jitterOffsets.length;
var roundingRange = 1 / 32;
this.copyUniforms["tDiffuse"].value = this.sampleRenderTarget.texture;
var width = readBuffer.width,
height = readBuffer.height; // render the scene multiple times, each slightly jitter offset from the last and accumulate the results.
for (var i = 0; i < jitterOffsets.length; i++) {
var jitterOffset = jitterOffsets[i];
if (this.camera.setViewOffset) {
this.camera.setViewOffset(width, height, jitterOffset[0] * 0.0625, jitterOffset[1] * 0.0625, // 0.0625 = 1 / 16
width, height);
}
var sampleWeight = baseSampleWeight;
if (this.unbiased) {
// the theory is that equal weights for each sample lead to an accumulation of rounding errors.
// The following equation varies the sampleWeight per sample so that it is uniformly distributed
// across a range of values whose rounding errors cancel each other out.
var uniformCenteredDistribution = -0.5 + (i + 0.5) / jitterOffsets.length;
sampleWeight += roundingRange * uniformCenteredDistribution;
}
this.copyUniforms["opacity"].value = sampleWeight;
renderer.setClearColor(this.clearColor, this.clearAlpha);
renderer.setRenderTarget(this.sampleRenderTarget);
renderer.clear();
renderer.render(this.scene, this.camera);
renderer.setRenderTarget(this.renderToScreen ? null : writeBuffer);
if (i === 0) {
renderer.setClearColor(0x000000, 0.0);
renderer.clear();
}
this.fsQuad.render(renderer);
}
if (this.camera.clearViewOffset) this.camera.clearViewOffset();
renderer.autoClear = autoClear;
renderer.setClearColor(oldClearColor, oldClearAlpha);
}
}); // These jitter vectors are specified in integers because it is easier.
// I am assuming a [-8,8) integer grid, but it needs to be mapped onto [-0.5,0.5)
// before being used, thus these integers need to be scaled by 1/16.
//
// Sample patterns reference: https://msdn.microsoft.com/en-us/library/windows/desktop/ff476218%28v=vs.85%29.aspx?f=255&MSPPError=-2147217396
THREE.SSAARenderPass.JitterVectors = [[[0, 0]], [[4, 4], [-4, -4]], [[-2, -6], [6, -2], [-6, 2], [2, 6]], [[1, -3], [-1, 3], [5, 1], [-3, -5], [-5, 5], [-7, -1], [3, 7], [7, -7]], [[1, 1], [-1, -3], [-3, 2], [4, -1], [-5, -2], [2, 5], [5, 3], [3, -5], [-2, 6], [0, -7], [-4, -6], [-6, 4], [-8, 0], [7, -4], [6, 7], [-7, -8]], [[-4, -7], [-7, -5], [-3, -5], [-5, -4], [-1, -4], [-2, -2], [-6, -1], [-4, 0], [-7, 1], [-1, 2], [-6, 3], [-3, 3], [-7, 6], [-3, 6], [-5, 7], [-1, 7], [5, -7], [1, -6], [6, -5], [4, -4], [2, -3], [7, -2], [1, -1], [4, -1], [2, 1], [6, 2], [0, 4], [4, 4], [2, 5], [7, 5], [5, 6], [3, 7]]];