bytev-charts
Version:
基于echarts和JavaScript及ES6封装的一个可以直接调用的图表组件库,内置主题设计,简单快捷,且支持用户自定义配置; npm 安装方式: npm install bytev-charts 若启动提示还需额外install插件,则运行 npm install @babel/runtime-corejs2 即可;
188 lines (167 loc) • 8.86 kB
JavaScript
import "core-js/modules/es.array.join.js";
import _Object$create from "@babel/runtime-corejs2/core-js/object/create";
console.warn("THREE.Water2: As part of the transition to ES6 Modules, the files in 'examples/js' were deprecated in May 2020 (r117) and will be deleted in December 2020 (r124). You can find more information about developing using ES6 Modules in https://threejs.org/docs/#manual/en/introduction/Installation.");
/**
* References:
* http://www.valvesoftware.com/publications/2010/siggraph2010_vlachos_waterflow.pdf
* http://graphicsrunner.blogspot.de/2010/08/water-using-flow-maps.html
*
*/
THREE.Water = function (geometry, options) {
THREE.Mesh.call(this, geometry);
this.type = 'Water';
var scope = this;
options = options || {};
var color = options.color !== undefined ? new THREE.Color(options.color) : new THREE.Color(0xFFFFFF);
var textureWidth = options.textureWidth || 512;
var textureHeight = options.textureHeight || 512;
var clipBias = options.clipBias || 0;
var flowDirection = options.flowDirection || new THREE.Vector2(1, 0);
var flowSpeed = options.flowSpeed || 0.03;
var reflectivity = options.reflectivity || 0.02;
var scale = options.scale || 1;
var shader = options.shader || THREE.Water.WaterShader;
var encoding = options.encoding !== undefined ? options.encoding : THREE.LinearEncoding;
var textureLoader = new THREE.TextureLoader();
var flowMap = options.flowMap || undefined;
var normalMap0 = options.normalMap0 || textureLoader.load('textures/water/Water_1_M_Normal.jpg');
var normalMap1 = options.normalMap1 || textureLoader.load('textures/water/Water_2_M_Normal.jpg');
var cycle = 0.15; // a cycle of a flow map phase
var halfCycle = cycle * 0.5;
var textureMatrix = new THREE.Matrix4();
var clock = new THREE.Clock(); // internal components
if (THREE.Reflector === undefined) {
console.error('THREE.Water: Required component THREE.Reflector not found.');
return;
}
if (THREE.Refractor === undefined) {
console.error('THREE.Water: Required component THREE.Refractor not found.');
return;
}
var reflector = new THREE.Reflector(geometry, {
textureWidth: textureWidth,
textureHeight: textureHeight,
clipBias: clipBias,
encoding: encoding
});
var refractor = new THREE.Refractor(geometry, {
textureWidth: textureWidth,
textureHeight: textureHeight,
clipBias: clipBias,
encoding: encoding
});
reflector.matrixAutoUpdate = false;
refractor.matrixAutoUpdate = false; // material
this.material = new THREE.ShaderMaterial({
uniforms: THREE.UniformsUtils.merge([THREE.UniformsLib['fog'], shader.uniforms]),
vertexShader: shader.vertexShader,
fragmentShader: shader.fragmentShader,
transparent: true,
fog: true
});
if (flowMap !== undefined) {
this.material.defines.USE_FLOWMAP = '';
this.material.uniforms["tFlowMap"] = {
type: 't',
value: flowMap
};
} else {
this.material.uniforms["flowDirection"] = {
type: 'v2',
value: flowDirection
};
} // maps
normalMap0.wrapS = normalMap0.wrapT = THREE.RepeatWrapping;
normalMap1.wrapS = normalMap1.wrapT = THREE.RepeatWrapping;
this.material.uniforms["tReflectionMap"].value = reflector.getRenderTarget().texture;
this.material.uniforms["tRefractionMap"].value = refractor.getRenderTarget().texture;
this.material.uniforms["tNormalMap0"].value = normalMap0;
this.material.uniforms["tNormalMap1"].value = normalMap1; // water
this.material.uniforms["color"].value = color;
this.material.uniforms["reflectivity"].value = reflectivity;
this.material.uniforms["textureMatrix"].value = textureMatrix; // inital values
this.material.uniforms["config"].value.x = 0; // flowMapOffset0
this.material.uniforms["config"].value.y = halfCycle; // flowMapOffset1
this.material.uniforms["config"].value.z = halfCycle; // halfCycle
this.material.uniforms["config"].value.w = scale; // scale
// functions
function updateTextureMatrix(camera) {
textureMatrix.set(0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0);
textureMatrix.multiply(camera.projectionMatrix);
textureMatrix.multiply(camera.matrixWorldInverse);
textureMatrix.multiply(scope.matrixWorld);
}
function updateFlow() {
var delta = clock.getDelta();
var config = scope.material.uniforms["config"];
config.value.x += flowSpeed * delta; // flowMapOffset0
config.value.y = config.value.x + halfCycle; // flowMapOffset1
// Important: The distance between offsets should be always the value of "halfCycle".
// Moreover, both offsets should be in the range of [ 0, cycle ].
// This approach ensures a smooth water flow and avoids "reset" effects.
if (config.value.x >= cycle) {
config.value.x = 0;
config.value.y = halfCycle;
} else if (config.value.y >= cycle) {
config.value.y = config.value.y - cycle;
}
} //
this.onBeforeRender = function (renderer, scene, camera) {
updateTextureMatrix(camera);
updateFlow();
scope.visible = false;
reflector.matrixWorld.copy(scope.matrixWorld);
refractor.matrixWorld.copy(scope.matrixWorld);
reflector.onBeforeRender(renderer, scene, camera);
refractor.onBeforeRender(renderer, scene, camera);
scope.visible = true;
};
};
THREE.Water.prototype = _Object$create(THREE.Mesh.prototype);
THREE.Water.prototype.constructor = THREE.Water;
THREE.Water.WaterShader = {
uniforms: {
'color': {
type: 'c',
value: null
},
'reflectivity': {
type: 'f',
value: 0
},
'tReflectionMap': {
type: 't',
value: null
},
'tRefractionMap': {
type: 't',
value: null
},
'tNormalMap0': {
type: 't',
value: null
},
'tNormalMap1': {
type: 't',
value: null
},
'textureMatrix': {
type: 'm4',
value: null
},
'config': {
type: 'v4',
value: new THREE.Vector4()
}
},
vertexShader: ['#include <common>', '#include <fog_pars_vertex>', '#include <logdepthbuf_pars_vertex>', 'uniform mat4 textureMatrix;', 'varying vec4 vCoord;', 'varying vec2 vUv;', 'varying vec3 vToEye;', 'void main() {', ' vUv = uv;', ' vCoord = textureMatrix * vec4( position, 1.0 );', ' vec4 worldPosition = modelMatrix * vec4( position, 1.0 );', ' vToEye = cameraPosition - worldPosition.xyz;', ' vec4 mvPosition = viewMatrix * worldPosition;', // used in fog_vertex
' gl_Position = projectionMatrix * mvPosition;', ' #include <logdepthbuf_vertex>', ' #include <fog_vertex>', '}'].join('\n'),
fragmentShader: ['#include <common>', '#include <fog_pars_fragment>', '#include <logdepthbuf_pars_fragment>', 'uniform sampler2D tReflectionMap;', 'uniform sampler2D tRefractionMap;', 'uniform sampler2D tNormalMap0;', 'uniform sampler2D tNormalMap1;', '#ifdef USE_FLOWMAP', ' uniform sampler2D tFlowMap;', '#else', ' uniform vec2 flowDirection;', '#endif', 'uniform vec3 color;', 'uniform float reflectivity;', 'uniform vec4 config;', 'varying vec4 vCoord;', 'varying vec2 vUv;', 'varying vec3 vToEye;', 'void main() {', ' #include <logdepthbuf_fragment>', ' float flowMapOffset0 = config.x;', ' float flowMapOffset1 = config.y;', ' float halfCycle = config.z;', ' float scale = config.w;', ' vec3 toEye = normalize( vToEye );', // determine flow direction
' vec2 flow;', ' #ifdef USE_FLOWMAP', ' flow = texture2D( tFlowMap, vUv ).rg * 2.0 - 1.0;', ' #else', ' flow = flowDirection;', ' #endif', ' flow.x *= - 1.0;', // sample normal maps (distort uvs with flowdata)
' vec4 normalColor0 = texture2D( tNormalMap0, ( vUv * scale ) + flow * flowMapOffset0 );', ' vec4 normalColor1 = texture2D( tNormalMap1, ( vUv * scale ) + flow * flowMapOffset1 );', // linear interpolate to get the final normal color
' float flowLerp = abs( halfCycle - flowMapOffset0 ) / halfCycle;', ' vec4 normalColor = mix( normalColor0, normalColor1, flowLerp );', // calculate normal vector
' vec3 normal = normalize( vec3( normalColor.r * 2.0 - 1.0, normalColor.b, normalColor.g * 2.0 - 1.0 ) );', // calculate the fresnel term to blend reflection and refraction maps
' float theta = max( dot( toEye, normal ), 0.0 );', ' float reflectance = reflectivity + ( 1.0 - reflectivity ) * pow( ( 1.0 - theta ), 5.0 );', // calculate final uv coords
' vec3 coord = vCoord.xyz / vCoord.w;', ' vec2 uv = coord.xy + coord.z * normal.xz * 0.05;', ' vec4 reflectColor = texture2D( tReflectionMap, vec2( 1.0 - uv.x, uv.y ) );', ' vec4 refractColor = texture2D( tRefractionMap, uv );', // multiply water color with the mix of both textures
' gl_FragColor = vec4( color, 1.0 ) * mix( refractColor, reflectColor, reflectance );', ' #include <tonemapping_fragment>', ' #include <encodings_fragment>', ' #include <fog_fragment>', '}'].join('\n')
};