bytev-charts
Version:
基于echarts和JavaScript及ES6封装的一个可以直接调用的图表组件库,内置主题设计,简单快捷,且支持用户自定义配置; npm 安装方式: npm install bytev-charts 若启动提示还需额外install插件,则运行 npm install @babel/runtime-corejs2 即可;
403 lines (343 loc) • 14.7 kB
JavaScript
import "core-js/modules/es.string.sub.js";
console.warn("THREE.ConvexObjectBreaker: As part of the transition to ES6 Modules, the files in 'examples/js' were deprecated in May 2020 (r117) and will be deleted in December 2020 (r124). You can find more information about developing using ES6 Modules in https://threejs.org/docs/#manual/en/introduction/Installation.");
/**
* @fileoverview This class can be used to subdivide a convex Geometry object into pieces.
*
* Usage:
*
* Use the function prepareBreakableObject to prepare a Mesh object to be broken.
*
* Then, call the various functions to subdivide the object (subdivideByImpact, cutByPlane)
*
* Sub-objects that are product of subdivision don't need prepareBreakableObject to be called on them.
*
* Requisites for the object:
*
* - Mesh object must have a BufferGeometry (not Geometry) and a Material
*
* - Vertex normals must be planar (not smoothed)
*
* - The geometry must be convex (this is not checked in the library). You can create convex
* geometries with THREE.ConvexBufferGeometry. The BoxBufferGeometry, SphereBufferGeometry and other convex primitives
* can also be used.
*
* Note: This lib adds member variables to object's userData member (see prepareBreakableObject function)
* Use with caution and read the code when using with other libs.
*
* @param {double} minSizeForBreak Min size a debris can have to break.
* @param {double} smallDelta Max distance to consider that a point belongs to a plane.
*
*/
THREE.ConvexObjectBreaker = function (minSizeForBreak, smallDelta) {
this.minSizeForBreak = minSizeForBreak || 1.4;
this.smallDelta = smallDelta || 0.0001;
this.tempLine1 = new THREE.Line3();
this.tempPlane1 = new THREE.Plane();
this.tempPlane2 = new THREE.Plane();
this.tempPlane_Cut = new THREE.Plane();
this.tempCM1 = new THREE.Vector3();
this.tempCM2 = new THREE.Vector3();
this.tempVector3 = new THREE.Vector3();
this.tempVector3_2 = new THREE.Vector3();
this.tempVector3_3 = new THREE.Vector3();
this.tempVector3_P0 = new THREE.Vector3();
this.tempVector3_P1 = new THREE.Vector3();
this.tempVector3_P2 = new THREE.Vector3();
this.tempVector3_N0 = new THREE.Vector3();
this.tempVector3_N1 = new THREE.Vector3();
this.tempVector3_AB = new THREE.Vector3();
this.tempVector3_CB = new THREE.Vector3();
this.tempResultObjects = {
object1: null,
object2: null
};
this.segments = [];
var n = 30 * 30;
for (var i = 0; i < n; i++) {
this.segments[i] = false;
}
};
THREE.ConvexObjectBreaker.prototype = {
constructor: THREE.ConvexObjectBreaker,
prepareBreakableObject: function prepareBreakableObject(object, mass, velocity, angularVelocity, breakable) {
// object is a THREE.Object3d (normally a Mesh), must have a BufferGeometry, and it must be convex.
// Its material property is propagated to its children (sub-pieces)
// mass must be > 0
if (!object.geometry.isBufferGeometry) {
console.error('THREE.ConvexObjectBreaker.prepareBreakableObject(): Parameter object must have a BufferGeometry.');
}
var userData = object.userData;
userData.mass = mass;
userData.velocity = velocity.clone();
userData.angularVelocity = angularVelocity.clone();
userData.breakable = breakable;
},
/*
* @param {int} maxRadialIterations Iterations for radial cuts.
* @param {int} maxRandomIterations Max random iterations for not-radial cuts
*
* Returns the array of pieces
*/
subdivideByImpact: function subdivideByImpact(object, pointOfImpact, normal, maxRadialIterations, maxRandomIterations) {
var debris = [];
var tempPlane1 = this.tempPlane1;
var tempPlane2 = this.tempPlane2;
this.tempVector3.addVectors(pointOfImpact, normal);
tempPlane1.setFromCoplanarPoints(pointOfImpact, object.position, this.tempVector3);
var maxTotalIterations = maxRandomIterations + maxRadialIterations;
var scope = this;
function subdivideRadial(subObject, startAngle, endAngle, numIterations) {
if (Math.random() < numIterations * 0.05 || numIterations > maxTotalIterations) {
debris.push(subObject);
return;
}
var angle = Math.PI;
if (numIterations === 0) {
tempPlane2.normal.copy(tempPlane1.normal);
tempPlane2.constant = tempPlane1.constant;
} else {
if (numIterations <= maxRadialIterations) {
angle = (endAngle - startAngle) * (0.2 + 0.6 * Math.random()) + startAngle; // Rotate tempPlane2 at impact point around normal axis and the angle
scope.tempVector3_2.copy(object.position).sub(pointOfImpact).applyAxisAngle(normal, angle).add(pointOfImpact);
tempPlane2.setFromCoplanarPoints(pointOfImpact, scope.tempVector3, scope.tempVector3_2);
} else {
angle = (0.5 * (numIterations & 1) + 0.2 * (2 - Math.random())) * Math.PI; // Rotate tempPlane2 at object position around normal axis and the angle
scope.tempVector3_2.copy(pointOfImpact).sub(subObject.position).applyAxisAngle(normal, angle).add(subObject.position);
scope.tempVector3_3.copy(normal).add(subObject.position);
tempPlane2.setFromCoplanarPoints(subObject.position, scope.tempVector3_3, scope.tempVector3_2);
}
} // Perform the cut
scope.cutByPlane(subObject, tempPlane2, scope.tempResultObjects);
var obj1 = scope.tempResultObjects.object1;
var obj2 = scope.tempResultObjects.object2;
if (obj1) {
subdivideRadial(obj1, startAngle, angle, numIterations + 1);
}
if (obj2) {
subdivideRadial(obj2, angle, endAngle, numIterations + 1);
}
}
subdivideRadial(object, 0, 2 * Math.PI, 0);
return debris;
},
cutByPlane: function cutByPlane(object, plane, output) {
// Returns breakable objects in output.object1 and output.object2 members, the resulting 2 pieces of the cut.
// object2 can be null if the plane doesn't cut the object.
// object1 can be null only in case of internal error
// Returned value is number of pieces, 0 for error.
var geometry = object.geometry;
var coords = geometry.attributes.position.array;
var normals = geometry.attributes.normal.array;
var numPoints = coords.length / 3;
var numFaces = numPoints / 3;
var indices = geometry.getIndex();
if (indices) {
indices = indices.array;
numFaces = indices.length / 3;
}
function getVertexIndex(faceIdx, vert) {
// vert = 0, 1 or 2.
var idx = faceIdx * 3 + vert;
return indices ? indices[idx] : idx;
}
var points1 = [];
var points2 = [];
var delta = this.smallDelta; // Reset segments mark
var numPointPairs = numPoints * numPoints;
for (var i = 0; i < numPointPairs; i++) {
this.segments[i] = false;
}
var p0 = this.tempVector3_P0;
var p1 = this.tempVector3_P1;
var n0 = this.tempVector3_N0;
var n1 = this.tempVector3_N1; // Iterate through the faces to mark edges shared by coplanar faces
for (var i = 0; i < numFaces - 1; i++) {
var a1 = getVertexIndex(i, 0);
var b1 = getVertexIndex(i, 1);
var c1 = getVertexIndex(i, 2); // Assuming all 3 vertices have the same normal
n0.set(normals[a1], normals[a1] + 1, normals[a1] + 2);
for (var j = i + 1; j < numFaces; j++) {
var a2 = getVertexIndex(j, 0);
var b2 = getVertexIndex(j, 1);
var c2 = getVertexIndex(j, 2); // Assuming all 3 vertices have the same normal
n1.set(normals[a2], normals[a2] + 1, normals[a2] + 2);
var coplanar = 1 - n0.dot(n1) < delta;
if (coplanar) {
if (a1 === a2 || a1 === b2 || a1 === c2) {
if (b1 === a2 || b1 === b2 || b1 === c2) {
this.segments[a1 * numPoints + b1] = true;
this.segments[b1 * numPoints + a1] = true;
} else {
this.segments[c1 * numPoints + a1] = true;
this.segments[a1 * numPoints + c1] = true;
}
} else if (b1 === a2 || b1 === b2 || b1 === c2) {
this.segments[c1 * numPoints + b1] = true;
this.segments[b1 * numPoints + c1] = true;
}
}
}
} // Transform the plane to object local space
var localPlane = this.tempPlane_Cut;
object.updateMatrix();
THREE.ConvexObjectBreaker.transformPlaneToLocalSpace(plane, object.matrix, localPlane); // Iterate through the faces adding points to both pieces
for (var i = 0; i < numFaces; i++) {
var va = getVertexIndex(i, 0);
var vb = getVertexIndex(i, 1);
var vc = getVertexIndex(i, 2);
for (var segment = 0; segment < 3; segment++) {
var i0 = segment === 0 ? va : segment === 1 ? vb : vc;
var i1 = segment === 0 ? vb : segment === 1 ? vc : va;
var segmentState = this.segments[i0 * numPoints + i1];
if (segmentState) continue; // The segment already has been processed in another face
// Mark segment as processed (also inverted segment)
this.segments[i0 * numPoints + i1] = true;
this.segments[i1 * numPoints + i0] = true;
p0.set(coords[3 * i0], coords[3 * i0 + 1], coords[3 * i0 + 2]);
p1.set(coords[3 * i1], coords[3 * i1 + 1], coords[3 * i1 + 2]); // mark: 1 for negative side, 2 for positive side, 3 for coplanar point
var mark0 = 0;
var d = localPlane.distanceToPoint(p0);
if (d > delta) {
mark0 = 2;
points2.push(p0.clone());
} else if (d < -delta) {
mark0 = 1;
points1.push(p0.clone());
} else {
mark0 = 3;
points1.push(p0.clone());
points2.push(p0.clone());
} // mark: 1 for negative side, 2 for positive side, 3 for coplanar point
var mark1 = 0;
var d = localPlane.distanceToPoint(p1);
if (d > delta) {
mark1 = 2;
points2.push(p1.clone());
} else if (d < -delta) {
mark1 = 1;
points1.push(p1.clone());
} else {
mark1 = 3;
points1.push(p1.clone());
points2.push(p1.clone());
}
if (mark0 === 1 && mark1 === 2 || mark0 === 2 && mark1 === 1) {
// Intersection of segment with the plane
this.tempLine1.start.copy(p0);
this.tempLine1.end.copy(p1);
var intersection = new THREE.Vector3();
intersection = localPlane.intersectLine(this.tempLine1, intersection);
if (intersection === undefined) {
// Shouldn't happen
console.error("Internal error: segment does not intersect plane.");
output.segmentedObject1 = null;
output.segmentedObject2 = null;
return 0;
}
points1.push(intersection);
points2.push(intersection.clone());
}
}
} // Calculate debris mass (very fast and imprecise):
var newMass = object.userData.mass * 0.5; // Calculate debris Center of Mass (again fast and imprecise)
this.tempCM1.set(0, 0, 0);
var radius1 = 0;
var numPoints1 = points1.length;
if (numPoints1 > 0) {
for (var i = 0; i < numPoints1; i++) {
this.tempCM1.add(points1[i]);
}
this.tempCM1.divideScalar(numPoints1);
for (var i = 0; i < numPoints1; i++) {
var p = points1[i];
p.sub(this.tempCM1);
radius1 = Math.max(radius1, p.x, p.y, p.z);
}
this.tempCM1.add(object.position);
}
this.tempCM2.set(0, 0, 0);
var radius2 = 0;
var numPoints2 = points2.length;
if (numPoints2 > 0) {
for (var i = 0; i < numPoints2; i++) {
this.tempCM2.add(points2[i]);
}
this.tempCM2.divideScalar(numPoints2);
for (var i = 0; i < numPoints2; i++) {
var p = points2[i];
p.sub(this.tempCM2);
radius2 = Math.max(radius2, p.x, p.y, p.z);
}
this.tempCM2.add(object.position);
}
var object1 = null;
var object2 = null;
var numObjects = 0;
if (numPoints1 > 4) {
object1 = new THREE.Mesh(new THREE.ConvexBufferGeometry(points1), object.material);
object1.position.copy(this.tempCM1);
object1.quaternion.copy(object.quaternion);
this.prepareBreakableObject(object1, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius1 > this.minSizeForBreak);
numObjects++;
}
if (numPoints2 > 4) {
object2 = new THREE.Mesh(new THREE.ConvexBufferGeometry(points2), object.material);
object2.position.copy(this.tempCM2);
object2.quaternion.copy(object.quaternion);
this.prepareBreakableObject(object2, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius2 > this.minSizeForBreak);
numObjects++;
}
output.object1 = object1;
output.object2 = object2;
return numObjects;
}
};
THREE.ConvexObjectBreaker.transformFreeVector = function (v, m) {
// input:
// vector interpreted as a free vector
// THREE.Matrix4 orthogonal matrix (matrix without scale)
var x = v.x,
y = v.y,
z = v.z;
var e = m.elements;
v.x = e[0] * x + e[4] * y + e[8] * z;
v.y = e[1] * x + e[5] * y + e[9] * z;
v.z = e[2] * x + e[6] * y + e[10] * z;
return v;
};
THREE.ConvexObjectBreaker.transformFreeVectorInverse = function (v, m) {
// input:
// vector interpreted as a free vector
// THREE.Matrix4 orthogonal matrix (matrix without scale)
var x = v.x,
y = v.y,
z = v.z;
var e = m.elements;
v.x = e[0] * x + e[1] * y + e[2] * z;
v.y = e[4] * x + e[5] * y + e[6] * z;
v.z = e[8] * x + e[9] * y + e[10] * z;
return v;
};
THREE.ConvexObjectBreaker.transformTiedVectorInverse = function (v, m) {
// input:
// vector interpreted as a tied (ordinary) vector
// THREE.Matrix4 orthogonal matrix (matrix without scale)
var x = v.x,
y = v.y,
z = v.z;
var e = m.elements;
v.x = e[0] * x + e[1] * y + e[2] * z - e[12];
v.y = e[4] * x + e[5] * y + e[6] * z - e[13];
v.z = e[8] * x + e[9] * y + e[10] * z - e[14];
return v;
};
THREE.ConvexObjectBreaker.transformPlaneToLocalSpace = function () {
var v1 = new THREE.Vector3();
return function transformPlaneToLocalSpace(plane, m, resultPlane) {
resultPlane.normal.copy(plane.normal);
resultPlane.constant = plane.constant;
var referencePoint = THREE.ConvexObjectBreaker.transformTiedVectorInverse(plane.coplanarPoint(v1), m);
THREE.ConvexObjectBreaker.transformFreeVectorInverse(resultPlane.normal, m); // recalculate constant (like in setFromNormalAndCoplanarPoint)
resultPlane.constant = -referencePoint.dot(resultPlane.normal);
};
}();