bytev-charts
Version:
基于echarts和JavaScript及ES6封装的一个可以直接调用的图表组件库,内置主题设计,简单快捷,且支持用户自定义配置; npm 安装方式: npm install bytev-charts 若启动提示还需额外install插件,则运行 npm install @babel/runtime-corejs2 即可;
808 lines (662 loc) • 25.8 kB
JavaScript
import _Object$assign from "@babel/runtime-corejs2/core-js/object/assign";
import _Array$isArray from "@babel/runtime-corejs2/core-js/array/is-array";
import _Number$EPSILON from "@babel/runtime-corejs2/core-js/number/epsilon";
console.warn("THREE.ConvexHull: As part of the transition to ES6 Modules, the files in 'examples/js' were deprecated in May 2020 (r117) and will be deleted in December 2020 (r124). You can find more information about developing using ES6 Modules in https://threejs.org/docs/#manual/en/introduction/Installation.");
/**
* Ported from: https://github.com/maurizzzio/quickhull3d/ by Mauricio Poppe (https://github.com/maurizzzio)
*/
THREE.ConvexHull = function () {
var Visible = 0;
var Deleted = 1;
var v1 = new THREE.Vector3();
function ConvexHull() {
this.tolerance = -1;
this.faces = []; // the generated faces of the convex hull
this.newFaces = []; // this array holds the faces that are generated within a single iteration
// the vertex lists work as follows:
//
// let 'a' and 'b' be 'Face' instances
// let 'v' be points wrapped as instance of 'Vertex'
//
// [v, v, ..., v, v, v, ...]
// ^ ^
// | |
// a.outside b.outside
//
this.assigned = new VertexList();
this.unassigned = new VertexList();
this.vertices = []; // vertices of the hull (internal representation of given geometry data)
}
_Object$assign(ConvexHull.prototype, {
setFromPoints: function setFromPoints(points) {
if (_Array$isArray(points) !== true) {
console.error('THREE.ConvexHull: Points parameter is not an array.');
}
if (points.length < 4) {
console.error('THREE.ConvexHull: The algorithm needs at least four points.');
}
this.makeEmpty();
for (var i = 0, l = points.length; i < l; i++) {
this.vertices.push(new VertexNode(points[i]));
}
this.compute();
return this;
},
setFromObject: function setFromObject(object) {
var points = [];
object.updateMatrixWorld(true);
object.traverse(function (node) {
var i, l, point;
var geometry = node.geometry;
if (geometry !== undefined) {
if (geometry.isGeometry) {
var vertices = geometry.vertices;
for (i = 0, l = vertices.length; i < l; i++) {
point = vertices[i].clone();
point.applyMatrix4(node.matrixWorld);
points.push(point);
}
} else if (geometry.isBufferGeometry) {
var attribute = geometry.attributes.position;
if (attribute !== undefined) {
for (i = 0, l = attribute.count; i < l; i++) {
point = new THREE.Vector3();
point.fromBufferAttribute(attribute, i).applyMatrix4(node.matrixWorld);
points.push(point);
}
}
}
}
});
return this.setFromPoints(points);
},
containsPoint: function containsPoint(point) {
var faces = this.faces;
for (var i = 0, l = faces.length; i < l; i++) {
var face = faces[i]; // compute signed distance and check on what half space the point lies
if (face.distanceToPoint(point) > this.tolerance) return false;
}
return true;
},
intersectRay: function intersectRay(ray, target) {
// based on "Fast Ray-Convex Polyhedron Intersection" by Eric Haines, GRAPHICS GEMS II
var faces = this.faces;
var tNear = -Infinity;
var tFar = Infinity;
for (var i = 0, l = faces.length; i < l; i++) {
var face = faces[i]; // interpret faces as planes for the further computation
var vN = face.distanceToPoint(ray.origin);
var vD = face.normal.dot(ray.direction); // if the origin is on the positive side of a plane (so the plane can "see" the origin) and
// the ray is turned away or parallel to the plane, there is no intersection
if (vN > 0 && vD >= 0) return null; // compute the distance from the ray’s origin to the intersection with the plane
var t = vD !== 0 ? -vN / vD : 0; // only proceed if the distance is positive. a negative distance means the intersection point
// lies "behind" the origin
if (t <= 0) continue; // now categorized plane as front-facing or back-facing
if (vD > 0) {
// plane faces away from the ray, so this plane is a back-face
tFar = Math.min(t, tFar);
} else {
// front-face
tNear = Math.max(t, tNear);
}
if (tNear > tFar) {
// if tNear ever is greater than tFar, the ray must miss the convex hull
return null;
}
} // evaluate intersection point
// always try tNear first since its the closer intersection point
if (tNear !== -Infinity) {
ray.at(tNear, target);
} else {
ray.at(tFar, target);
}
return target;
},
intersectsRay: function intersectsRay(ray) {
return this.intersectRay(ray, v1) !== null;
},
makeEmpty: function makeEmpty() {
this.faces = [];
this.vertices = [];
return this;
},
// Adds a vertex to the 'assigned' list of vertices and assigns it to the given face
addVertexToFace: function addVertexToFace(vertex, face) {
vertex.face = face;
if (face.outside === null) {
this.assigned.append(vertex);
} else {
this.assigned.insertBefore(face.outside, vertex);
}
face.outside = vertex;
return this;
},
// Removes a vertex from the 'assigned' list of vertices and from the given face
removeVertexFromFace: function removeVertexFromFace(vertex, face) {
if (vertex === face.outside) {
// fix face.outside link
if (vertex.next !== null && vertex.next.face === face) {
// face has at least 2 outside vertices, move the 'outside' reference
face.outside = vertex.next;
} else {
// vertex was the only outside vertex that face had
face.outside = null;
}
}
this.assigned.remove(vertex);
return this;
},
// Removes all the visible vertices that a given face is able to see which are stored in the 'assigned' vertext list
removeAllVerticesFromFace: function removeAllVerticesFromFace(face) {
if (face.outside !== null) {
// reference to the first and last vertex of this face
var start = face.outside;
var end = face.outside;
while (end.next !== null && end.next.face === face) {
end = end.next;
}
this.assigned.removeSubList(start, end); // fix references
start.prev = end.next = null;
face.outside = null;
return start;
}
},
// Removes all the visible vertices that 'face' is able to see
deleteFaceVertices: function deleteFaceVertices(face, absorbingFace) {
var faceVertices = this.removeAllVerticesFromFace(face);
if (faceVertices !== undefined) {
if (absorbingFace === undefined) {
// mark the vertices to be reassigned to some other face
this.unassigned.appendChain(faceVertices);
} else {
// if there's an absorbing face try to assign as many vertices as possible to it
var vertex = faceVertices;
do {
// we need to buffer the subsequent vertex at this point because the 'vertex.next' reference
// will be changed by upcoming method calls
var nextVertex = vertex.next;
var distance = absorbingFace.distanceToPoint(vertex.point); // check if 'vertex' is able to see 'absorbingFace'
if (distance > this.tolerance) {
this.addVertexToFace(vertex, absorbingFace);
} else {
this.unassigned.append(vertex);
} // now assign next vertex
vertex = nextVertex;
} while (vertex !== null);
}
}
return this;
},
// Reassigns as many vertices as possible from the unassigned list to the new faces
resolveUnassignedPoints: function resolveUnassignedPoints(newFaces) {
if (this.unassigned.isEmpty() === false) {
var vertex = this.unassigned.first();
do {
// buffer 'next' reference, see .deleteFaceVertices()
var nextVertex = vertex.next;
var maxDistance = this.tolerance;
var maxFace = null;
for (var i = 0; i < newFaces.length; i++) {
var face = newFaces[i];
if (face.mark === Visible) {
var distance = face.distanceToPoint(vertex.point);
if (distance > maxDistance) {
maxDistance = distance;
maxFace = face;
}
if (maxDistance > 1000 * this.tolerance) break;
}
} // 'maxFace' can be null e.g. if there are identical vertices
if (maxFace !== null) {
this.addVertexToFace(vertex, maxFace);
}
vertex = nextVertex;
} while (vertex !== null);
}
return this;
},
// Computes the extremes of a simplex which will be the initial hull
computeExtremes: function computeExtremes() {
var min = new THREE.Vector3();
var max = new THREE.Vector3();
var minVertices = [];
var maxVertices = [];
var i, l, j; // initially assume that the first vertex is the min/max
for (i = 0; i < 3; i++) {
minVertices[i] = maxVertices[i] = this.vertices[0];
}
min.copy(this.vertices[0].point);
max.copy(this.vertices[0].point); // compute the min/max vertex on all six directions
for (i = 0, l = this.vertices.length; i < l; i++) {
var vertex = this.vertices[i];
var point = vertex.point; // update the min coordinates
for (j = 0; j < 3; j++) {
if (point.getComponent(j) < min.getComponent(j)) {
min.setComponent(j, point.getComponent(j));
minVertices[j] = vertex;
}
} // update the max coordinates
for (j = 0; j < 3; j++) {
if (point.getComponent(j) > max.getComponent(j)) {
max.setComponent(j, point.getComponent(j));
maxVertices[j] = vertex;
}
}
} // use min/max vectors to compute an optimal epsilon
this.tolerance = 3 * _Number$EPSILON * (Math.max(Math.abs(min.x), Math.abs(max.x)) + Math.max(Math.abs(min.y), Math.abs(max.y)) + Math.max(Math.abs(min.z), Math.abs(max.z)));
return {
min: minVertices,
max: maxVertices
};
},
// Computes the initial simplex assigning to its faces all the points
// that are candidates to form part of the hull
computeInitialHull: function () {
var line3, plane, closestPoint;
return function computeInitialHull() {
if (line3 === undefined) {
line3 = new THREE.Line3();
plane = new THREE.Plane();
closestPoint = new THREE.Vector3();
}
var vertex,
vertices = this.vertices;
var extremes = this.computeExtremes();
var min = extremes.min;
var max = extremes.max;
var v0, v1, v2, v3;
var i, l, j; // 1. Find the two vertices 'v0' and 'v1' with the greatest 1d separation
// (max.x - min.x)
// (max.y - min.y)
// (max.z - min.z)
var distance,
maxDistance = 0;
var index = 0;
for (i = 0; i < 3; i++) {
distance = max[i].point.getComponent(i) - min[i].point.getComponent(i);
if (distance > maxDistance) {
maxDistance = distance;
index = i;
}
}
v0 = min[index];
v1 = max[index]; // 2. The next vertex 'v2' is the one farthest to the line formed by 'v0' and 'v1'
maxDistance = 0;
line3.set(v0.point, v1.point);
for (i = 0, l = this.vertices.length; i < l; i++) {
vertex = vertices[i];
if (vertex !== v0 && vertex !== v1) {
line3.closestPointToPoint(vertex.point, true, closestPoint);
distance = closestPoint.distanceToSquared(vertex.point);
if (distance > maxDistance) {
maxDistance = distance;
v2 = vertex;
}
}
} // 3. The next vertex 'v3' is the one farthest to the plane 'v0', 'v1', 'v2'
maxDistance = -1;
plane.setFromCoplanarPoints(v0.point, v1.point, v2.point);
for (i = 0, l = this.vertices.length; i < l; i++) {
vertex = vertices[i];
if (vertex !== v0 && vertex !== v1 && vertex !== v2) {
distance = Math.abs(plane.distanceToPoint(vertex.point));
if (distance > maxDistance) {
maxDistance = distance;
v3 = vertex;
}
}
}
var faces = [];
if (plane.distanceToPoint(v3.point) < 0) {
// the face is not able to see the point so 'plane.normal' is pointing outside the tetrahedron
faces.push(Face.create(v0, v1, v2), Face.create(v3, v1, v0), Face.create(v3, v2, v1), Face.create(v3, v0, v2)); // set the twin edge
for (i = 0; i < 3; i++) {
j = (i + 1) % 3; // join face[ i ] i > 0, with the first face
faces[i + 1].getEdge(2).setTwin(faces[0].getEdge(j)); // join face[ i ] with face[ i + 1 ], 1 <= i <= 3
faces[i + 1].getEdge(1).setTwin(faces[j + 1].getEdge(0));
}
} else {
// the face is able to see the point so 'plane.normal' is pointing inside the tetrahedron
faces.push(Face.create(v0, v2, v1), Face.create(v3, v0, v1), Face.create(v3, v1, v2), Face.create(v3, v2, v0)); // set the twin edge
for (i = 0; i < 3; i++) {
j = (i + 1) % 3; // join face[ i ] i > 0, with the first face
faces[i + 1].getEdge(2).setTwin(faces[0].getEdge((3 - i) % 3)); // join face[ i ] with face[ i + 1 ]
faces[i + 1].getEdge(0).setTwin(faces[j + 1].getEdge(1));
}
} // the initial hull is the tetrahedron
for (i = 0; i < 4; i++) {
this.faces.push(faces[i]);
} // initial assignment of vertices to the faces of the tetrahedron
for (i = 0, l = vertices.length; i < l; i++) {
vertex = vertices[i];
if (vertex !== v0 && vertex !== v1 && vertex !== v2 && vertex !== v3) {
maxDistance = this.tolerance;
var maxFace = null;
for (j = 0; j < 4; j++) {
distance = this.faces[j].distanceToPoint(vertex.point);
if (distance > maxDistance) {
maxDistance = distance;
maxFace = this.faces[j];
}
}
if (maxFace !== null) {
this.addVertexToFace(vertex, maxFace);
}
}
}
return this;
};
}(),
// Removes inactive faces
reindexFaces: function reindexFaces() {
var activeFaces = [];
for (var i = 0; i < this.faces.length; i++) {
var face = this.faces[i];
if (face.mark === Visible) {
activeFaces.push(face);
}
}
this.faces = activeFaces;
return this;
},
// Finds the next vertex to create faces with the current hull
nextVertexToAdd: function nextVertexToAdd() {
// if the 'assigned' list of vertices is empty, no vertices are left. return with 'undefined'
if (this.assigned.isEmpty() === false) {
var eyeVertex,
maxDistance = 0; // grap the first available face and start with the first visible vertex of that face
var eyeFace = this.assigned.first().face;
var vertex = eyeFace.outside; // now calculate the farthest vertex that face can see
do {
var distance = eyeFace.distanceToPoint(vertex.point);
if (distance > maxDistance) {
maxDistance = distance;
eyeVertex = vertex;
}
vertex = vertex.next;
} while (vertex !== null && vertex.face === eyeFace);
return eyeVertex;
}
},
// Computes a chain of half edges in CCW order called the 'horizon'.
// For an edge to be part of the horizon it must join a face that can see
// 'eyePoint' and a face that cannot see 'eyePoint'.
computeHorizon: function computeHorizon(eyePoint, crossEdge, face, horizon) {
// moves face's vertices to the 'unassigned' vertex list
this.deleteFaceVertices(face);
face.mark = Deleted;
var edge;
if (crossEdge === null) {
edge = crossEdge = face.getEdge(0);
} else {
// start from the next edge since 'crossEdge' was already analyzed
// (actually 'crossEdge.twin' was the edge who called this method recursively)
edge = crossEdge.next;
}
do {
var twinEdge = edge.twin;
var oppositeFace = twinEdge.face;
if (oppositeFace.mark === Visible) {
if (oppositeFace.distanceToPoint(eyePoint) > this.tolerance) {
// the opposite face can see the vertex, so proceed with next edge
this.computeHorizon(eyePoint, twinEdge, oppositeFace, horizon);
} else {
// the opposite face can't see the vertex, so this edge is part of the horizon
horizon.push(edge);
}
}
edge = edge.next;
} while (edge !== crossEdge);
return this;
},
// Creates a face with the vertices 'eyeVertex.point', 'horizonEdge.tail' and 'horizonEdge.head' in CCW order
addAdjoiningFace: function addAdjoiningFace(eyeVertex, horizonEdge) {
// all the half edges are created in ccw order thus the face is always pointing outside the hull
var face = Face.create(eyeVertex, horizonEdge.tail(), horizonEdge.head());
this.faces.push(face); // join face.getEdge( - 1 ) with the horizon's opposite edge face.getEdge( - 1 ) = face.getEdge( 2 )
face.getEdge(-1).setTwin(horizonEdge.twin);
return face.getEdge(0); // the half edge whose vertex is the eyeVertex
},
// Adds 'horizon.length' faces to the hull, each face will be linked with the
// horizon opposite face and the face on the left/right
addNewFaces: function addNewFaces(eyeVertex, horizon) {
this.newFaces = [];
var firstSideEdge = null;
var previousSideEdge = null;
for (var i = 0; i < horizon.length; i++) {
var horizonEdge = horizon[i]; // returns the right side edge
var sideEdge = this.addAdjoiningFace(eyeVertex, horizonEdge);
if (firstSideEdge === null) {
firstSideEdge = sideEdge;
} else {
// joins face.getEdge( 1 ) with previousFace.getEdge( 0 )
sideEdge.next.setTwin(previousSideEdge);
}
this.newFaces.push(sideEdge.face);
previousSideEdge = sideEdge;
} // perform final join of new faces
firstSideEdge.next.setTwin(previousSideEdge);
return this;
},
// Adds a vertex to the hull
addVertexToHull: function addVertexToHull(eyeVertex) {
var horizon = [];
this.unassigned.clear(); // remove 'eyeVertex' from 'eyeVertex.face' so that it can't be added to the 'unassigned' vertex list
this.removeVertexFromFace(eyeVertex, eyeVertex.face);
this.computeHorizon(eyeVertex.point, null, eyeVertex.face, horizon);
this.addNewFaces(eyeVertex, horizon); // reassign 'unassigned' vertices to the new faces
this.resolveUnassignedPoints(this.newFaces);
return this;
},
cleanup: function cleanup() {
this.assigned.clear();
this.unassigned.clear();
this.newFaces = [];
return this;
},
compute: function compute() {
var vertex;
this.computeInitialHull(); // add all available vertices gradually to the hull
while ((vertex = this.nextVertexToAdd()) !== undefined) {
this.addVertexToHull(vertex);
}
this.reindexFaces();
this.cleanup();
return this;
}
}); //
function Face() {
this.normal = new THREE.Vector3();
this.midpoint = new THREE.Vector3();
this.area = 0;
this.constant = 0; // signed distance from face to the origin
this.outside = null; // reference to a vertex in a vertex list this face can see
this.mark = Visible;
this.edge = null;
}
_Object$assign(Face, {
create: function create(a, b, c) {
var face = new Face();
var e0 = new HalfEdge(a, face);
var e1 = new HalfEdge(b, face);
var e2 = new HalfEdge(c, face); // join edges
e0.next = e2.prev = e1;
e1.next = e0.prev = e2;
e2.next = e1.prev = e0; // main half edge reference
face.edge = e0;
return face.compute();
}
});
_Object$assign(Face.prototype, {
getEdge: function getEdge(i) {
var edge = this.edge;
while (i > 0) {
edge = edge.next;
i--;
}
while (i < 0) {
edge = edge.prev;
i++;
}
return edge;
},
compute: function () {
var triangle;
return function compute() {
if (triangle === undefined) triangle = new THREE.Triangle();
var a = this.edge.tail();
var b = this.edge.head();
var c = this.edge.next.head();
triangle.set(a.point, b.point, c.point);
triangle.getNormal(this.normal);
triangle.getMidpoint(this.midpoint);
this.area = triangle.getArea();
this.constant = this.normal.dot(this.midpoint);
return this;
};
}(),
distanceToPoint: function distanceToPoint(point) {
return this.normal.dot(point) - this.constant;
}
}); // Entity for a Doubly-Connected Edge List (DCEL).
function HalfEdge(vertex, face) {
this.vertex = vertex;
this.prev = null;
this.next = null;
this.twin = null;
this.face = face;
}
_Object$assign(HalfEdge.prototype, {
head: function head() {
return this.vertex;
},
tail: function tail() {
return this.prev ? this.prev.vertex : null;
},
length: function length() {
var head = this.head();
var tail = this.tail();
if (tail !== null) {
return tail.point.distanceTo(head.point);
}
return -1;
},
lengthSquared: function lengthSquared() {
var head = this.head();
var tail = this.tail();
if (tail !== null) {
return tail.point.distanceToSquared(head.point);
}
return -1;
},
setTwin: function setTwin(edge) {
this.twin = edge;
edge.twin = this;
return this;
}
}); // A vertex as a double linked list node.
function VertexNode(point) {
this.point = point;
this.prev = null;
this.next = null;
this.face = null; // the face that is able to see this vertex
} // A double linked list that contains vertex nodes.
function VertexList() {
this.head = null;
this.tail = null;
}
_Object$assign(VertexList.prototype, {
first: function first() {
return this.head;
},
last: function last() {
return this.tail;
},
clear: function clear() {
this.head = this.tail = null;
return this;
},
// Inserts a vertex before the target vertex
insertBefore: function insertBefore(target, vertex) {
vertex.prev = target.prev;
vertex.next = target;
if (vertex.prev === null) {
this.head = vertex;
} else {
vertex.prev.next = vertex;
}
target.prev = vertex;
return this;
},
// Inserts a vertex after the target vertex
insertAfter: function insertAfter(target, vertex) {
vertex.prev = target;
vertex.next = target.next;
if (vertex.next === null) {
this.tail = vertex;
} else {
vertex.next.prev = vertex;
}
target.next = vertex;
return this;
},
// Appends a vertex to the end of the linked list
append: function append(vertex) {
if (this.head === null) {
this.head = vertex;
} else {
this.tail.next = vertex;
}
vertex.prev = this.tail;
vertex.next = null; // the tail has no subsequent vertex
this.tail = vertex;
return this;
},
// Appends a chain of vertices where 'vertex' is the head.
appendChain: function appendChain(vertex) {
if (this.head === null) {
this.head = vertex;
} else {
this.tail.next = vertex;
}
vertex.prev = this.tail; // ensure that the 'tail' reference points to the last vertex of the chain
while (vertex.next !== null) {
vertex = vertex.next;
}
this.tail = vertex;
return this;
},
// Removes a vertex from the linked list
remove: function remove(vertex) {
if (vertex.prev === null) {
this.head = vertex.next;
} else {
vertex.prev.next = vertex.next;
}
if (vertex.next === null) {
this.tail = vertex.prev;
} else {
vertex.next.prev = vertex.prev;
}
return this;
},
// Removes a list of vertices whose 'head' is 'a' and whose 'tail' is b
removeSubList: function removeSubList(a, b) {
if (a.prev === null) {
this.head = b.next;
} else {
a.prev.next = b.next;
}
if (b.next === null) {
this.tail = a.prev;
} else {
b.next.prev = a.prev;
}
return this;
},
isEmpty: function isEmpty() {
return this.head === null;
}
});
return ConvexHull;
}();