bytev-charts
Version:
基于echarts和JavaScript及ES6封装的一个可以直接调用的图表组件库,内置主题设计,简单快捷,且支持用户自定义配置; npm 安装方式: npm install bytev-charts 若启动提示还需额外install插件,则运行 npm install @babel/runtime-corejs2 即可;
1,574 lines (1,320 loc) • 57.2 kB
JavaScript
import "core-js/modules/es.array.iterator.js";
import "core-js/modules/es.object.to-string.js";
import "core-js/modules/web.dom-collections.iterator.js";
import "core-js/modules/es.array.sort.js";
import "core-js/modules/es.function.name.js";
import "core-js/modules/es.date.to-string.js";
import "core-js/modules/es.regexp.to-string.js";
import "core-js/modules/es.array.index-of.js";
import "core-js/modules/es.function.bind.js";
import "core-js/modules/es.array-buffer.slice.js";
import "core-js/modules/es.typed-array.uint32-array.js";
import "core-js/modules/es.typed-array.copy-within.js";
import "core-js/modules/es.typed-array.every.js";
import "core-js/modules/es.typed-array.fill.js";
import "core-js/modules/es.typed-array.filter.js";
import "core-js/modules/es.typed-array.find.js";
import "core-js/modules/es.typed-array.find-index.js";
import "core-js/modules/es.typed-array.for-each.js";
import "core-js/modules/es.typed-array.includes.js";
import "core-js/modules/es.typed-array.index-of.js";
import "core-js/modules/es.typed-array.iterator.js";
import "core-js/modules/es.typed-array.join.js";
import "core-js/modules/es.typed-array.last-index-of.js";
import "core-js/modules/es.typed-array.map.js";
import "core-js/modules/es.typed-array.reduce.js";
import "core-js/modules/es.typed-array.reduce-right.js";
import "core-js/modules/es.typed-array.reverse.js";
import "core-js/modules/es.typed-array.set.js";
import "core-js/modules/es.typed-array.slice.js";
import "core-js/modules/es.typed-array.some.js";
import "core-js/modules/es.typed-array.sort.js";
import "core-js/modules/es.typed-array.subarray.js";
import "core-js/modules/es.typed-array.to-locale-string.js";
import "core-js/modules/es.typed-array.to-string.js";
import "core-js/modules/es.typed-array.float32-array.js";
import "core-js/modules/es.array.for-each.js";
import "core-js/modules/web.dom-collections.for-each.js";
import "core-js/modules/es.regexp.exec.js";
import "core-js/modules/es.string.replace.js";
import "core-js/modules/es.typed-array.uint8-array.js";
import "core-js/modules/es.data-view.js";
import "core-js/modules/es.array.last-index-of.js";
import "core-js/modules/es.array.map.js";
import "core-js/modules/es.array.slice.js";
import "core-js/modules/es.typed-array.uint16-array.js";
import "core-js/modules/es.array-buffer.constructor.js";
import _Object$assign from "@babel/runtime-corejs2/core-js/object/assign";
import _Object$create from "@babel/runtime-corejs2/core-js/object/create";
import _parseInt from "@babel/runtime-corejs2/core-js/parse-int";
console.warn("THREE.AssimpLoader: As part of the transition to ES6 Modules, the files in 'examples/js' were deprecated in May 2020 (r117) and will be deleted in December 2020 (r124). You can find more information about developing using ES6 Modules in https://threejs.org/docs/#manual/en/introduction/Installation.");
THREE.AssimpLoader = function (manager) {
THREE.Loader.call(this, manager);
};
THREE.AssimpLoader.prototype = _Object$assign(_Object$create(THREE.Loader.prototype), {
constructor: THREE.AssimpLoader,
load: function load(url, onLoad, onProgress, onError) {
var scope = this;
var path = scope.path === '' ? THREE.LoaderUtils.extractUrlBase(url) : scope.path;
var loader = new THREE.FileLoader(scope.manager);
loader.setPath(scope.path);
loader.setResponseType('arraybuffer');
loader.setRequestHeader(scope.requestHeader);
loader.load(url, function (buffer) {
try {
onLoad(scope.parse(buffer, path));
} catch (e) {
if (onError) {
onError(e);
} else {
console.error(e);
}
scope.manager.itemError(url);
}
}, onProgress, onError);
},
parse: function parse(buffer, path) {
var textureLoader = new THREE.TextureLoader(this.manager);
textureLoader.setPath(this.resourcePath || path).setCrossOrigin(this.crossOrigin);
var Virtulous = {};
Virtulous.KeyFrame = function (time, matrix) {
this.time = time;
this.matrix = matrix.clone();
this.position = new THREE.Vector3();
this.quaternion = new THREE.Quaternion();
this.scale = new THREE.Vector3(1, 1, 1);
this.matrix.decompose(this.position, this.quaternion, this.scale);
this.clone = function () {
var n = new Virtulous.KeyFrame(this.time, this.matrix);
return n;
};
this.lerp = function (nextKey, time) {
time -= this.time;
var dist = nextKey.time - this.time;
var l = time / dist;
var l2 = 1 - l;
var keypos = this.position;
var keyrot = this.quaternion; // var keyscl = key.parentspaceScl || key.scl;
var key2pos = nextKey.position;
var key2rot = nextKey.quaternion; // var key2scl = key2.parentspaceScl || key2.scl;
Virtulous.KeyFrame.tempAniPos.x = keypos.x * l2 + key2pos.x * l;
Virtulous.KeyFrame.tempAniPos.y = keypos.y * l2 + key2pos.y * l;
Virtulous.KeyFrame.tempAniPos.z = keypos.z * l2 + key2pos.z * l; // tempAniScale.x = keyscl[0] * l2 + key2scl[0] * l;
// tempAniScale.y = keyscl[1] * l2 + key2scl[1] * l;
// tempAniScale.z = keyscl[2] * l2 + key2scl[2] * l;
Virtulous.KeyFrame.tempAniQuat.set(keyrot.x, keyrot.y, keyrot.z, keyrot.w);
Virtulous.KeyFrame.tempAniQuat.slerp(key2rot, l);
return Virtulous.KeyFrame.tempAniMatrix.compose(Virtulous.KeyFrame.tempAniPos, Virtulous.KeyFrame.tempAniQuat, Virtulous.KeyFrame.tempAniScale);
};
};
Virtulous.KeyFrame.tempAniPos = new THREE.Vector3();
Virtulous.KeyFrame.tempAniQuat = new THREE.Quaternion();
Virtulous.KeyFrame.tempAniScale = new THREE.Vector3(1, 1, 1);
Virtulous.KeyFrame.tempAniMatrix = new THREE.Matrix4();
Virtulous.KeyFrameTrack = function () {
this.keys = [];
this.target = null;
this.time = 0;
this.length = 0;
this._accelTable = {};
this.fps = 20;
this.addKey = function (key) {
this.keys.push(key);
};
this.init = function () {
this.sortKeys();
if (this.keys.length > 0) this.length = this.keys[this.keys.length - 1].time;else this.length = 0;
if (!this.fps) return;
for (var j = 0; j < this.length * this.fps; j++) {
for (var i = 0; i < this.keys.length; i++) {
if (this.keys[i].time == j) {
this._accelTable[j] = i;
break;
} else if (this.keys[i].time < j / this.fps && this.keys[i + 1] && this.keys[i + 1].time >= j / this.fps) {
this._accelTable[j] = i;
break;
}
}
}
};
this.parseFromThree = function (data) {
var fps = data.fps;
this.target = data.node;
var track = data.hierarchy[0].keys;
for (var i = 0; i < track.length; i++) {
this.addKey(new Virtulous.KeyFrame(i / fps || track[i].time, track[i].targets[0].data));
}
this.init();
};
this.parseFromCollada = function (data) {
var track = data.keys;
var fps = this.fps;
for (var i = 0; i < track.length; i++) {
this.addKey(new Virtulous.KeyFrame(i / fps || track[i].time, track[i].matrix));
}
this.init();
};
this.sortKeys = function () {
this.keys.sort(this.keySortFunc);
};
this.keySortFunc = function (a, b) {
return a.time - b.time;
};
this.clone = function () {
var t = new Virtulous.KeyFrameTrack();
t.target = this.target;
t.time = this.time;
t.length = this.length;
for (var i = 0; i < this.keys.length; i++) {
t.addKey(this.keys[i].clone());
}
t.init();
return t;
};
this.reTarget = function (root, compareitor) {
if (!compareitor) compareitor = Virtulous.TrackTargetNodeNameCompare;
this.target = compareitor(root, this.target);
};
this.keySearchAccel = function (time) {
time *= this.fps;
time = Math.floor(time);
return this._accelTable[time] || 0;
};
this.setTime = function (time) {
time = Math.abs(time);
if (this.length) time = time % this.length + .05;
var key0 = null;
var key1 = null;
for (var i = this.keySearchAccel(time); i < this.keys.length; i++) {
if (this.keys[i].time == time) {
key0 = this.keys[i];
key1 = this.keys[i];
break;
} else if (this.keys[i].time < time && this.keys[i + 1] && this.keys[i + 1].time > time) {
key0 = this.keys[i];
key1 = this.keys[i + 1];
break;
} else if (this.keys[i].time < time && i == this.keys.length - 1) {
key0 = this.keys[i];
key1 = this.keys[0].clone();
key1.time += this.length + .05;
break;
}
}
if (key0 && key1 && key0 !== key1) {
this.target.matrixAutoUpdate = false;
this.target.matrix.copy(key0.lerp(key1, time));
this.target.matrixWorldNeedsUpdate = true;
return;
}
if (key0 && key1 && key0 == key1) {
this.target.matrixAutoUpdate = false;
this.target.matrix.copy(key0.matrix);
this.target.matrixWorldNeedsUpdate = true;
return;
}
};
};
Virtulous.TrackTargetNodeNameCompare = function (root, target) {
function find(node, name) {
if (node.name == name) return node;
for (var i = 0; i < node.children.length; i++) {
var r = find(node.children[i], name);
if (r) return r;
}
return null;
}
return find(root, target.name);
};
Virtulous.Animation = function () {
this.tracks = [];
this.length = 0;
this.addTrack = function (track) {
this.tracks.push(track);
this.length = Math.max(track.length, this.length);
};
this.setTime = function (time) {
this.time = time;
for (var i = 0; i < this.tracks.length; i++) {
this.tracks[i].setTime(time);
}
};
this.clone = function (target, compareitor) {
if (!compareitor) compareitor = Virtulous.TrackTargetNodeNameCompare;
var n = new Virtulous.Animation();
n.target = target;
for (var i = 0; i < this.tracks.length; i++) {
var track = this.tracks[i].clone();
track.reTarget(target, compareitor);
n.addTrack(track);
}
return n;
};
};
var ASSBIN_CHUNK_AICAMERA = 0x1234;
var ASSBIN_CHUNK_AILIGHT = 0x1235;
var ASSBIN_CHUNK_AITEXTURE = 0x1236;
var ASSBIN_CHUNK_AIMESH = 0x1237;
var ASSBIN_CHUNK_AINODEANIM = 0x1238;
var ASSBIN_CHUNK_AISCENE = 0x1239;
var ASSBIN_CHUNK_AIBONE = 0x123a;
var ASSBIN_CHUNK_AIANIMATION = 0x123b;
var ASSBIN_CHUNK_AINODE = 0x123c;
var ASSBIN_CHUNK_AIMATERIAL = 0x123d;
var ASSBIN_CHUNK_AIMATERIALPROPERTY = 0x123e;
var ASSBIN_MESH_HAS_POSITIONS = 0x1;
var ASSBIN_MESH_HAS_NORMALS = 0x2;
var ASSBIN_MESH_HAS_TANGENTS_AND_BITANGENTS = 0x4;
var ASSBIN_MESH_HAS_TEXCOORD_BASE = 0x100;
var ASSBIN_MESH_HAS_COLOR_BASE = 0x10000;
var AI_MAX_NUMBER_OF_COLOR_SETS = 1;
var AI_MAX_NUMBER_OF_TEXTURECOORDS = 4; //var aiLightSource_UNDEFINED = 0x0;
//! A directional light source has a well-defined direction
//! but is infinitely far away. That's quite a good
//! approximation for sun light.
var aiLightSource_DIRECTIONAL = 0x1; //! A point light source has a well-defined position
//! in space but no direction - it emits light in all
//! directions. A normal bulb is a point light.
//var aiLightSource_POINT = 0x2;
//! A spot light source emits light in a specific
//! angle. It has a position and a direction it is pointing to.
//! A good example for a spot light is a light spot in
//! sport arenas.
var aiLightSource_SPOT = 0x3; //! The generic light level of the world, including the bounces
//! of all other lightsources.
//! Typically, there's at most one ambient light in a scene.
//! This light type doesn't have a valid position, direction, or
//! other properties, just a color.
//var aiLightSource_AMBIENT = 0x4;
/** Flat shading. Shading is done on per-face base,
* diffuse only. Also known as 'faceted shading'.
*/
//var aiShadingMode_Flat = 0x1;
/** Simple Gouraud shading.
*/
//var aiShadingMode_Gouraud = 0x2;
/** Phong-Shading -
*/
//var aiShadingMode_Phong = 0x3;
/** Phong-Blinn-Shading
*/
//var aiShadingMode_Blinn = 0x4;
/** Toon-Shading per pixel
*
* Also known as 'comic' shader.
*/
//var aiShadingMode_Toon = 0x5;
/** OrenNayar-Shading per pixel
*
* Extension to standard Lambertian shading, taking the
* roughness of the material into account
*/
//var aiShadingMode_OrenNayar = 0x6;
/** Minnaert-Shading per pixel
*
* Extension to standard Lambertian shading, taking the
* "darkness" of the material into account
*/
//var aiShadingMode_Minnaert = 0x7;
/** CookTorrance-Shading per pixel
*
* Special shader for metallic surfaces.
*/
//var aiShadingMode_CookTorrance = 0x8;
/** No shading at all. Constant light influence of 1.0.
*/
//var aiShadingMode_NoShading = 0x9;
/** Fresnel shading
*/
//var aiShadingMode_Fresnel = 0xa;
//var aiTextureType_NONE = 0x0;
/** The texture is combined with the result of the diffuse
* lighting equation.
*/
var aiTextureType_DIFFUSE = 0x1;
/** The texture is combined with the result of the specular
* lighting equation.
*/
//var aiTextureType_SPECULAR = 0x2;
/** The texture is combined with the result of the ambient
* lighting equation.
*/
//var aiTextureType_AMBIENT = 0x3;
/** The texture is added to the result of the lighting
* calculation. It isn't influenced by incoming light.
*/
//var aiTextureType_EMISSIVE = 0x4;
/** The texture is a height map.
*
* By convention, higher gray-scale values stand for
* higher elevations from the base height.
*/
//var aiTextureType_HEIGHT = 0x5;
/** The texture is a (tangent space) normal-map.
*
* Again, there are several conventions for tangent-space
* normal maps. Assimp does (intentionally) not
* distinguish here.
*/
var aiTextureType_NORMALS = 0x6;
/** The texture defines the glossiness of the material.
*
* The glossiness is in fact the exponent of the specular
* (phong) lighting equation. Usually there is a conversion
* function defined to map the linear color values in the
* texture to a suitable exponent. Have fun.
*/
//var aiTextureType_SHININESS = 0x7;
/** The texture defines per-pixel opacity.
*
* Usually 'white' means opaque and 'black' means
* 'transparency'. Or quite the opposite. Have fun.
*/
var aiTextureType_OPACITY = 0x8;
/** Displacement texture
*
* The exact purpose and format is application-dependent.
* Higher color values stand for higher vertex displacements.
*/
//var aiTextureType_DISPLACEMENT = 0x9;
/** Lightmap texture (aka Ambient Occlusion)
*
* Both 'Lightmaps' and dedicated 'ambient occlusion maps' are
* covered by this material property. The texture contains a
* scaling value for the final color value of a pixel. Its
* intensity is not affected by incoming light.
*/
var aiTextureType_LIGHTMAP = 0xA;
/** Reflection texture
*
* Contains the color of a perfect mirror reflection.
* Rarely used, almost never for real-time applications.
*/
//var aiTextureType_REFLECTION = 0xB;
/** Unknown texture
*
* A texture reference that does not match any of the definitions
* above is considered to be 'unknown'. It is still imported,
* but is excluded from any further postprocessing.
*/
//var aiTextureType_UNKNOWN = 0xC;
var BONESPERVERT = 4;
function ASSBIN_MESH_HAS_TEXCOORD(n) {
return ASSBIN_MESH_HAS_TEXCOORD_BASE << n;
}
function ASSBIN_MESH_HAS_COLOR(n) {
return ASSBIN_MESH_HAS_COLOR_BASE << n;
}
function markBones(scene) {
for (var i in scene.mMeshes) {
var mesh = scene.mMeshes[i];
for (var k in mesh.mBones) {
var boneNode = scene.findNode(mesh.mBones[k].mName);
if (boneNode) boneNode.isBone = true;
}
}
}
function cloneTreeToBones(root, scene) {
var rootBone = new THREE.Bone();
rootBone.matrix.copy(root.matrix);
rootBone.matrixWorld.copy(root.matrixWorld);
rootBone.position.copy(root.position);
rootBone.quaternion.copy(root.quaternion);
rootBone.scale.copy(root.scale);
scene.nodeCount++;
rootBone.name = "bone_" + root.name + scene.nodeCount.toString();
if (!scene.nodeToBoneMap[root.name]) scene.nodeToBoneMap[root.name] = [];
scene.nodeToBoneMap[root.name].push(rootBone);
for (var i in root.children) {
var child = cloneTreeToBones(root.children[i], scene);
rootBone.add(child);
}
return rootBone;
}
function sortWeights(indexes, weights) {
var pairs = [];
for (var i = 0; i < indexes.length; i++) {
pairs.push({
i: indexes[i],
w: weights[i]
});
}
pairs.sort(function (a, b) {
return b.w - a.w;
});
while (pairs.length < 4) {
pairs.push({
i: 0,
w: 0
});
}
if (pairs.length > 4) pairs.length = 4;
var sum = 0;
for (var i = 0; i < 4; i++) {
sum += pairs[i].w * pairs[i].w;
}
sum = Math.sqrt(sum);
for (var i = 0; i < 4; i++) {
pairs[i].w = pairs[i].w / sum;
indexes[i] = pairs[i].i;
weights[i] = pairs[i].w;
}
}
function findMatchingBone(root, name) {
if (root.name.indexOf("bone_" + name) == 0) return root;
for (var i in root.children) {
var ret = findMatchingBone(root.children[i], name);
if (ret) return ret;
}
return undefined;
}
function aiMesh() {
this.mPrimitiveTypes = 0;
this.mNumVertices = 0;
this.mNumFaces = 0;
this.mNumBones = 0;
this.mMaterialIndex = 0;
this.mVertices = [];
this.mNormals = [];
this.mTangents = [];
this.mBitangents = [];
this.mColors = [[]];
this.mTextureCoords = [[]];
this.mFaces = [];
this.mBones = [];
this.hookupSkeletons = function (scene) {
if (this.mBones.length == 0) return;
var allBones = [];
var offsetMatrix = [];
var skeletonRoot = scene.findNode(this.mBones[0].mName);
while (skeletonRoot.mParent && skeletonRoot.mParent.isBone) {
skeletonRoot = skeletonRoot.mParent;
}
var threeSkeletonRoot = skeletonRoot.toTHREE(scene);
var threeSkeletonRootBone = cloneTreeToBones(threeSkeletonRoot, scene);
this.threeNode.add(threeSkeletonRootBone);
for (var i = 0; i < this.mBones.length; i++) {
var bone = findMatchingBone(threeSkeletonRootBone, this.mBones[i].mName);
if (bone) {
var tbone = bone;
allBones.push(tbone); //tbone.matrixAutoUpdate = false;
offsetMatrix.push(this.mBones[i].mOffsetMatrix.toTHREE());
} else {
var skeletonRoot = scene.findNode(this.mBones[i].mName);
if (!skeletonRoot) return;
var threeSkeletonRoot = skeletonRoot.toTHREE(scene);
var threeSkeletonRootBone = cloneTreeToBones(threeSkeletonRoot, scene);
this.threeNode.add(threeSkeletonRootBone);
var bone = findMatchingBone(threeSkeletonRootBone, this.mBones[i].mName);
var tbone = bone;
allBones.push(tbone); //tbone.matrixAutoUpdate = false;
offsetMatrix.push(this.mBones[i].mOffsetMatrix.toTHREE());
}
}
var skeleton = new THREE.Skeleton(allBones, offsetMatrix);
this.threeNode.bind(skeleton, new THREE.Matrix4());
this.threeNode.material.skinning = true;
};
this.toTHREE = function (scene) {
if (this.threeNode) return this.threeNode;
var geometry = new THREE.BufferGeometry();
var mat;
if (scene.mMaterials[this.mMaterialIndex]) mat = scene.mMaterials[this.mMaterialIndex].toTHREE(scene);else mat = new THREE.MeshLambertMaterial();
geometry.setIndex(new THREE.BufferAttribute(new Uint32Array(this.mIndexArray), 1));
geometry.setAttribute('position', new THREE.BufferAttribute(this.mVertexBuffer, 3));
if (this.mNormalBuffer && this.mNormalBuffer.length > 0) geometry.setAttribute('normal', new THREE.BufferAttribute(this.mNormalBuffer, 3));
if (this.mColorBuffer && this.mColorBuffer.length > 0) geometry.setAttribute('color', new THREE.BufferAttribute(this.mColorBuffer, 4));
if (this.mTexCoordsBuffers[0] && this.mTexCoordsBuffers[0].length > 0) geometry.setAttribute('uv', new THREE.BufferAttribute(new Float32Array(this.mTexCoordsBuffers[0]), 2));
if (this.mTexCoordsBuffers[1] && this.mTexCoordsBuffers[1].length > 0) geometry.setAttribute('uv1', new THREE.BufferAttribute(new Float32Array(this.mTexCoordsBuffers[1]), 2));
if (this.mTangentBuffer && this.mTangentBuffer.length > 0) geometry.setAttribute('tangents', new THREE.BufferAttribute(this.mTangentBuffer, 3));
if (this.mBitangentBuffer && this.mBitangentBuffer.length > 0) geometry.setAttribute('bitangents', new THREE.BufferAttribute(this.mBitangentBuffer, 3));
if (this.mBones.length > 0) {
var weights = [];
var bones = [];
for (var i = 0; i < this.mBones.length; i++) {
for (var j = 0; j < this.mBones[i].mWeights.length; j++) {
var weight = this.mBones[i].mWeights[j];
if (weight) {
if (!weights[weight.mVertexId]) weights[weight.mVertexId] = [];
if (!bones[weight.mVertexId]) bones[weight.mVertexId] = [];
weights[weight.mVertexId].push(weight.mWeight);
bones[weight.mVertexId].push(_parseInt(i));
}
}
}
for (var i in bones) {
sortWeights(bones[i], weights[i]);
}
var _weights = [];
var _bones = [];
for (var i = 0; i < weights.length; i++) {
for (var j = 0; j < 4; j++) {
if (weights[i] && bones[i]) {
_weights.push(weights[i][j]);
_bones.push(bones[i][j]);
} else {
_weights.push(0);
_bones.push(0);
}
}
}
geometry.setAttribute('skinWeight', new THREE.BufferAttribute(new Float32Array(_weights), BONESPERVERT));
geometry.setAttribute('skinIndex', new THREE.BufferAttribute(new Float32Array(_bones), BONESPERVERT));
}
var mesh;
if (this.mBones.length == 0) mesh = new THREE.Mesh(geometry, mat);
if (this.mBones.length > 0) {
mesh = new THREE.SkinnedMesh(geometry, mat);
mesh.normalizeSkinWeights();
}
this.threeNode = mesh; //mesh.matrixAutoUpdate = false;
return mesh;
};
}
function aiFace() {
this.mNumIndices = 0;
this.mIndices = [];
}
function aiVector3D() {
this.x = 0;
this.y = 0;
this.z = 0;
this.toTHREE = function () {
return new THREE.Vector3(this.x, this.y, this.z);
};
}
function aiColor3D() {
this.r = 0;
this.g = 0;
this.b = 0;
this.a = 0;
this.toTHREE = function () {
return new THREE.Color(this.r, this.g, this.b);
};
}
function aiQuaternion() {
this.x = 0;
this.y = 0;
this.z = 0;
this.w = 0;
this.toTHREE = function () {
return new THREE.Quaternion(this.x, this.y, this.z, this.w);
};
}
function aiVertexWeight() {
this.mVertexId = 0;
this.mWeight = 0;
}
function aiString() {
this.data = [];
this.toString = function () {
var str = '';
this.data.forEach(function (i) {
str += String.fromCharCode(i);
});
return str.replace(/[^\x20-\x7E]+/g, '');
};
}
function aiVectorKey() {
this.mTime = 0;
this.mValue = null;
}
function aiQuatKey() {
this.mTime = 0;
this.mValue = null;
}
function aiNode() {
this.mName = '';
this.mTransformation = [];
this.mNumChildren = 0;
this.mNumMeshes = 0;
this.mMeshes = [];
this.mChildren = [];
this.toTHREE = function (scene) {
if (this.threeNode) return this.threeNode;
var o = new THREE.Object3D();
o.name = this.mName;
o.matrix = this.mTransformation.toTHREE();
for (var i = 0; i < this.mChildren.length; i++) {
o.add(this.mChildren[i].toTHREE(scene));
}
for (var i = 0; i < this.mMeshes.length; i++) {
o.add(scene.mMeshes[this.mMeshes[i]].toTHREE(scene));
}
this.threeNode = o; //o.matrixAutoUpdate = false;
o.matrix.decompose(o.position, o.quaternion, o.scale);
return o;
};
}
function aiBone() {
this.mName = '';
this.mNumWeights = 0;
this.mOffsetMatrix = 0;
}
function aiMaterialProperty() {
this.mKey = "";
this.mSemantic = 0;
this.mIndex = 0;
this.mData = [];
this.mDataLength = 0;
this.mType = 0;
this.dataAsColor = function () {
var array = new Uint8Array(this.mData).buffer;
var reader = new DataView(array);
var r = reader.getFloat32(0, true);
var g = reader.getFloat32(4, true);
var b = reader.getFloat32(8, true); //var a = reader.getFloat32(12, true);
return new THREE.Color(r, g, b);
};
this.dataAsFloat = function () {
var array = new Uint8Array(this.mData).buffer;
var reader = new DataView(array);
var r = reader.getFloat32(0, true);
return r;
};
this.dataAsBool = function () {
var array = new Uint8Array(this.mData).buffer;
var reader = new DataView(array);
var r = reader.getFloat32(0, true);
return !!r;
};
this.dataAsString = function () {
var s = new aiString();
s.data = this.mData;
return s.toString();
};
this.dataAsMap = function () {
var s = new aiString();
s.data = this.mData;
var path = s.toString();
path = path.replace(/\\/g, '/');
if (path.indexOf('/') != -1) {
path = path.substr(path.lastIndexOf('/') + 1);
}
return textureLoader.load(path);
};
}
var namePropMapping = {
"?mat.name": "name",
"$mat.shadingm": "shading",
"$mat.twosided": "twoSided",
"$mat.wireframe": "wireframe",
"$clr.ambient": "ambient",
"$clr.diffuse": "color",
"$clr.specular": "specular",
"$clr.emissive": "emissive",
"$clr.transparent": "transparent",
"$clr.reflective": "reflect",
"$mat.shininess": "shininess",
"$mat.reflectivity": "reflectivity",
"$mat.refracti": "refraction",
"$tex.file": "map"
};
var nameTypeMapping = {
"?mat.name": "string",
"$mat.shadingm": "bool",
"$mat.twosided": "bool",
"$mat.wireframe": "bool",
"$clr.ambient": "color",
"$clr.diffuse": "color",
"$clr.specular": "color",
"$clr.emissive": "color",
"$clr.transparent": "color",
"$clr.reflective": "color",
"$mat.shininess": "float",
"$mat.reflectivity": "float",
"$mat.refracti": "float",
"$tex.file": "map"
};
function aiMaterial() {
this.mNumAllocated = 0;
this.mNumProperties = 0;
this.mProperties = [];
this.toTHREE = function () {
var mat = new THREE.MeshPhongMaterial();
for (var i = 0; i < this.mProperties.length; i++) {
if (nameTypeMapping[this.mProperties[i].mKey] == 'float') mat[namePropMapping[this.mProperties[i].mKey]] = this.mProperties[i].dataAsFloat();
if (nameTypeMapping[this.mProperties[i].mKey] == 'color') mat[namePropMapping[this.mProperties[i].mKey]] = this.mProperties[i].dataAsColor();
if (nameTypeMapping[this.mProperties[i].mKey] == 'bool') mat[namePropMapping[this.mProperties[i].mKey]] = this.mProperties[i].dataAsBool();
if (nameTypeMapping[this.mProperties[i].mKey] == 'string') mat[namePropMapping[this.mProperties[i].mKey]] = this.mProperties[i].dataAsString();
if (nameTypeMapping[this.mProperties[i].mKey] == 'map') {
var prop = this.mProperties[i];
if (prop.mSemantic == aiTextureType_DIFFUSE) mat.map = this.mProperties[i].dataAsMap();
if (prop.mSemantic == aiTextureType_NORMALS) mat.normalMap = this.mProperties[i].dataAsMap();
if (prop.mSemantic == aiTextureType_LIGHTMAP) mat.lightMap = this.mProperties[i].dataAsMap();
if (prop.mSemantic == aiTextureType_OPACITY) mat.alphaMap = this.mProperties[i].dataAsMap();
}
}
mat.ambient.r = .53;
mat.ambient.g = .53;
mat.ambient.b = .53;
mat.color.r = 1;
mat.color.g = 1;
mat.color.b = 1;
return mat;
};
}
function veclerp(v1, v2, l) {
var v = new THREE.Vector3();
var lm1 = 1 - l;
v.x = v1.x * l + v2.x * lm1;
v.y = v1.y * l + v2.y * lm1;
v.z = v1.z * l + v2.z * lm1;
return v;
}
function quatlerp(q1, q2, l) {
return q1.clone().slerp(q2, 1 - l);
}
function sampleTrack(keys, time, lne, lerp) {
if (keys.length == 1) return keys[0].mValue.toTHREE();
var dist = Infinity;
var key = null;
var nextKey = null;
for (var i = 0; i < keys.length; i++) {
var timeDist = Math.abs(keys[i].mTime - time);
if (timeDist < dist && keys[i].mTime <= time) {
dist = timeDist;
key = keys[i];
nextKey = keys[i + 1];
}
}
if (!key) {
return null;
} else if (nextKey) {
var dT = nextKey.mTime - key.mTime;
var T = key.mTime - time;
var l = T / dT;
return lerp(key.mValue.toTHREE(), nextKey.mValue.toTHREE(), l);
} else {
nextKey = keys[0].clone();
nextKey.mTime += lne;
var dT = nextKey.mTime - key.mTime;
var T = key.mTime - time;
var l = T / dT;
return lerp(key.mValue.toTHREE(), nextKey.mValue.toTHREE(), l);
}
}
function aiNodeAnim() {
this.mNodeName = "";
this.mNumPositionKeys = 0;
this.mNumRotationKeys = 0;
this.mNumScalingKeys = 0;
this.mPositionKeys = [];
this.mRotationKeys = [];
this.mScalingKeys = [];
this.mPreState = "";
this.mPostState = "";
this.init = function (tps) {
if (!tps) tps = 1;
function t(t) {
t.mTime /= tps;
}
this.mPositionKeys.forEach(t);
this.mRotationKeys.forEach(t);
this.mScalingKeys.forEach(t);
};
this.sortKeys = function () {
function comp(a, b) {
return a.mTime - b.mTime;
}
this.mPositionKeys.sort(comp);
this.mRotationKeys.sort(comp);
this.mScalingKeys.sort(comp);
};
this.getLength = function () {
return Math.max(Math.max.apply(null, this.mPositionKeys.map(function (a) {
return a.mTime;
})), Math.max.apply(null, this.mRotationKeys.map(function (a) {
return a.mTime;
})), Math.max.apply(null, this.mScalingKeys.map(function (a) {
return a.mTime;
})));
};
this.toTHREE = function (o) {
this.sortKeys();
var length = this.getLength();
var track = new Virtulous.KeyFrameTrack();
for (var i = 0; i < length; i += .05) {
var matrix = new THREE.Matrix4();
var time = i;
var pos = sampleTrack(this.mPositionKeys, time, length, veclerp);
var scale = sampleTrack(this.mScalingKeys, time, length, veclerp);
var rotation = sampleTrack(this.mRotationKeys, time, length, quatlerp);
matrix.compose(pos, rotation, scale);
var key = new Virtulous.KeyFrame(time, matrix);
track.addKey(key);
}
track.target = o.findNode(this.mNodeName).toTHREE();
var tracks = [track];
if (o.nodeToBoneMap[this.mNodeName]) {
for (var i = 0; i < o.nodeToBoneMap[this.mNodeName].length; i++) {
var t2 = track.clone();
t2.target = o.nodeToBoneMap[this.mNodeName][i];
tracks.push(t2);
}
}
return tracks;
};
}
function aiAnimation() {
this.mName = "";
this.mDuration = 0;
this.mTicksPerSecond = 0;
this.mNumChannels = 0;
this.mChannels = [];
this.toTHREE = function (root) {
var animationHandle = new Virtulous.Animation();
for (var i in this.mChannels) {
this.mChannels[i].init(this.mTicksPerSecond);
var tracks = this.mChannels[i].toTHREE(root);
for (var j in tracks) {
tracks[j].init();
animationHandle.addTrack(tracks[j]);
}
}
animationHandle.length = Math.max.apply(null, animationHandle.tracks.map(function (e) {
return e.length;
}));
return animationHandle;
};
}
function aiTexture() {
this.mWidth = 0;
this.mHeight = 0;
this.texAchFormatHint = [];
this.pcData = [];
}
function aiLight() {
this.mName = '';
this.mType = 0;
this.mAttenuationConstant = 0;
this.mAttenuationLinear = 0;
this.mAttenuationQuadratic = 0;
this.mAngleInnerCone = 0;
this.mAngleOuterCone = 0;
this.mColorDiffuse = null;
this.mColorSpecular = null;
this.mColorAmbient = null;
}
function aiCamera() {
this.mName = '';
this.mPosition = null;
this.mLookAt = null;
this.mUp = null;
this.mHorizontalFOV = 0;
this.mClipPlaneNear = 0;
this.mClipPlaneFar = 0;
this.mAspect = 0;
}
function aiScene() {
this.versionMajor = 0;
this.versionMinor = 0;
this.versionRevision = 0;
this.compileFlags = 0;
this.mFlags = 0;
this.mNumMeshes = 0;
this.mNumMaterials = 0;
this.mNumAnimations = 0;
this.mNumTextures = 0;
this.mNumLights = 0;
this.mNumCameras = 0;
this.mRootNode = null;
this.mMeshes = [];
this.mMaterials = [];
this.mAnimations = [];
this.mLights = [];
this.mCameras = [];
this.nodeToBoneMap = {};
this.findNode = function (name, root) {
if (!root) {
root = this.mRootNode;
}
if (root.mName == name) {
return root;
}
for (var i = 0; i < root.mChildren.length; i++) {
var ret = this.findNode(name, root.mChildren[i]);
if (ret) return ret;
}
return null;
};
this.toTHREE = function () {
this.nodeCount = 0;
markBones(this);
var o = this.mRootNode.toTHREE(this);
for (var i in this.mMeshes) {
this.mMeshes[i].hookupSkeletons(this);
}
if (this.mAnimations.length > 0) {
var a = this.mAnimations[0].toTHREE(this);
}
return {
object: o,
animation: a
};
};
}
function aiMatrix4() {
this.elements = [[], [], [], []];
this.toTHREE = function () {
var m = new THREE.Matrix4();
for (var i = 0; i < 4; ++i) {
for (var i2 = 0; i2 < 4; ++i2) {
m.elements[i * 4 + i2] = this.elements[i2][i];
}
}
return m;
};
}
var littleEndian = true;
function readFloat(dataview) {
var val = dataview.getFloat32(dataview.readOffset, littleEndian);
dataview.readOffset += 4;
return val;
}
function Read_double(dataview) {
var val = dataview.getFloat64(dataview.readOffset, littleEndian);
dataview.readOffset += 8;
return val;
}
function Read_uint8_t(dataview) {
var val = dataview.getUint8(dataview.readOffset);
dataview.readOffset += 1;
return val;
}
function Read_uint16_t(dataview) {
var val = dataview.getUint16(dataview.readOffset, littleEndian);
dataview.readOffset += 2;
return val;
}
function Read_unsigned_int(dataview) {
var val = dataview.getUint32(dataview.readOffset, littleEndian);
dataview.readOffset += 4;
return val;
}
function Read_uint32_t(dataview) {
var val = dataview.getUint32(dataview.readOffset, littleEndian);
dataview.readOffset += 4;
return val;
}
function Read_aiVector3D(stream) {
var v = new aiVector3D();
v.x = readFloat(stream);
v.y = readFloat(stream);
v.z = readFloat(stream);
return v;
}
function Read_aiColor3D(stream) {
var c = new aiColor3D();
c.r = readFloat(stream);
c.g = readFloat(stream);
c.b = readFloat(stream);
return c;
}
function Read_aiQuaternion(stream) {
var v = new aiQuaternion();
v.w = readFloat(stream);
v.x = readFloat(stream);
v.y = readFloat(stream);
v.z = readFloat(stream);
return v;
}
function Read_aiString(stream) {
var s = new aiString();
var stringlengthbytes = Read_unsigned_int(stream);
stream.ReadBytes(s.data, 1, stringlengthbytes);
return s.toString();
}
function Read_aiVertexWeight(stream) {
var w = new aiVertexWeight();
w.mVertexId = Read_unsigned_int(stream);
w.mWeight = readFloat(stream);
return w;
}
function Read_aiMatrix4x4(stream) {
var m = new aiMatrix4();
for (var i = 0; i < 4; ++i) {
for (var i2 = 0; i2 < 4; ++i2) {
m.elements[i][i2] = readFloat(stream);
}
}
return m;
}
function Read_aiVectorKey(stream) {
var v = new aiVectorKey();
v.mTime = Read_double(stream);
v.mValue = Read_aiVector3D(stream);
return v;
}
function Read_aiQuatKey(stream) {
var v = new aiQuatKey();
v.mTime = Read_double(stream);
v.mValue = Read_aiQuaternion(stream);
return v;
}
function ReadArray_aiVertexWeight(stream, data, size) {
for (var i = 0; i < size; i++) {
data[i] = Read_aiVertexWeight(stream);
}
}
function ReadArray_aiVectorKey(stream, data, size) {
for (var i = 0; i < size; i++) {
data[i] = Read_aiVectorKey(stream);
}
}
function ReadArray_aiQuatKey(stream, data, size) {
for (var i = 0; i < size; i++) {
data[i] = Read_aiQuatKey(stream);
}
}
function ReadBounds(stream, T
/*p*/
, n) {
// not sure what to do here, the data isn't really useful.
return stream.Seek(sizeof(T) * n, aiOrigin_CUR);
}
function ai_assert(bool) {
if (!bool) throw "asset failed";
}
function ReadBinaryNode(stream, parent, depth) {
var chunkID = Read_uint32_t(stream);
ai_assert(chunkID == ASSBIN_CHUNK_AINODE);
/*uint32_t size =*/
Read_uint32_t(stream);
var node = new aiNode();
node.mParent = parent;
node.mDepth = depth;
node.mName = Read_aiString(stream);
node.mTransformation = Read_aiMatrix4x4(stream);
node.mNumChildren = Read_unsigned_int(stream);
node.mNumMeshes = Read_unsigned_int(stream);
if (node.mNumMeshes) {
node.mMeshes = [];
for (var i = 0; i < node.mNumMeshes; ++i) {
node.mMeshes[i] = Read_unsigned_int(stream);
}
}
if (node.mNumChildren) {
node.mChildren = [];
for (var i = 0; i < node.mNumChildren; ++i) {
var node2 = ReadBinaryNode(stream, node, depth++);
node.mChildren[i] = node2;
}
}
return node;
} // -----------------------------------------------------------------------------------
function ReadBinaryBone(stream, b) {
var chunkID = Read_uint32_t(stream);
ai_assert(chunkID == ASSBIN_CHUNK_AIBONE);
/*uint32_t size =*/
Read_uint32_t(stream);
b.mName = Read_aiString(stream);
b.mNumWeights = Read_unsigned_int(stream);
b.mOffsetMatrix = Read_aiMatrix4x4(stream); // for the moment we write dumb min/max values for the bones, too.
// maybe I'll add a better, hash-like solution later
if (shortened) {
ReadBounds(stream, b.mWeights, b.mNumWeights);
} else {
// else write as usual
b.mWeights = [];
ReadArray_aiVertexWeight(stream, b.mWeights, b.mNumWeights);
}
return b;
}
function ReadBinaryMesh(stream, mesh) {
var chunkID = Read_uint32_t(stream);
ai_assert(chunkID == ASSBIN_CHUNK_AIMESH);
/*uint32_t size =*/
Read_uint32_t(stream);
mesh.mPrimitiveTypes = Read_unsigned_int(stream);
mesh.mNumVertices = Read_unsigned_int(stream);
mesh.mNumFaces = Read_unsigned_int(stream);
mesh.mNumBones = Read_unsigned_int(stream);
mesh.mMaterialIndex = Read_unsigned_int(stream);
mesh.mNumUVComponents = []; // first of all, write bits for all existent vertex components
var c = Read_unsigned_int(stream);
if (c & ASSBIN_MESH_HAS_POSITIONS) {
if (shortened) {
ReadBounds(stream, mesh.mVertices, mesh.mNumVertices);
} else {
// else write as usual
mesh.mVertices = [];
mesh.mVertexBuffer = stream.subArray32(stream.readOffset, stream.readOffset + mesh.mNumVertices * 3 * 4);
stream.Seek(mesh.mNumVertices * 3 * 4, aiOrigin_CUR);
}
}
if (c & ASSBIN_MESH_HAS_NORMALS) {
if (shortened) {
ReadBounds(stream, mesh.mNormals, mesh.mNumVertices);
} else {
// else write as usual
mesh.mNormals = [];
mesh.mNormalBuffer = stream.subArray32(stream.readOffset, stream.readOffset + mesh.mNumVertices * 3 * 4);
stream.Seek(mesh.mNumVertices * 3 * 4, aiOrigin_CUR);
}
}
if (c & ASSBIN_MESH_HAS_TANGENTS_AND_BITANGENTS) {
if (shortened) {
ReadBounds(stream, mesh.mTangents, mesh.mNumVertices);
ReadBounds(stream, mesh.mBitangents, mesh.mNumVertices);
} else {
// else write as usual
mesh.mTangents = [];
mesh.mTangentBuffer = stream.subArray32(stream.readOffset, stream.readOffset + mesh.mNumVertices * 3 * 4);
stream.Seek(mesh.mNumVertices * 3 * 4, aiOrigin_CUR);
mesh.mBitangents = [];
mesh.mBitangentBuffer = stream.subArray32(stream.readOffset, stream.readOffset + mesh.mNumVertices * 3 * 4);
stream.Seek(mesh.mNumVertices * 3 * 4, aiOrigin_CUR);
}
}
for (var n = 0; n < AI_MAX_NUMBER_OF_COLOR_SETS; ++n) {
if (!(c & ASSBIN_MESH_HAS_COLOR(n))) break;
if (shortened) {
ReadBounds(stream, mesh.mColors[n], mesh.mNumVertices);
} else {
// else write as usual
mesh.mColors[n] = [];
mesh.mColorBuffer = stream.subArray32(stream.readOffset, stream.readOffset + mesh.mNumVertices * 4 * 4);
stream.Seek(mesh.mNumVertices * 4 * 4, aiOrigin_CUR);
}
}
mesh.mTexCoordsBuffers = [];
for (var n = 0; n < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++n) {
if (!(c & ASSBIN_MESH_HAS_TEXCOORD(n))) break; // write number of UV components
mesh.mNumUVComponents[n] = Read_unsigned_int(stream);
if (shortened) {
ReadBounds(stream, mesh.mTextureCoords[n], mesh.mNumVertices);
} else {
// else write as usual
mesh.mTextureCoords[n] = []; //note that assbin always writes 3d texcoords
mesh.mTexCoordsBuffers[n] = [];
for (var uv = 0; uv < mesh.mNumVertices; uv++) {
mesh.mTexCoordsBuffers[n].push(readFloat(stream));
mesh.mTexCoordsBuffers[n].push(readFloat(stream));
readFloat(stream);
}
}
} // write faces. There are no floating-point calculations involved
// in these, so we can write a simple hash over the face data
// to the dump file. We generate a single 32 Bit hash for 512 faces
// using Assimp's standard hashing function.
if (shortened) {
Read_unsigned_int(stream);
} else {
// else write as usual
// if there are less than 2^16 vertices, we can simply use 16 bit integers ...
mesh.mFaces = [];
mesh.mIndexArray = [];
for (var i = 0; i < mesh.mNumFaces; ++i) {
var f = mesh.mFaces[i] = new aiFace(); // BOOST_STATIC_ASSERT(AI_MAX_FACE_INDICES <= 0xffff);
f.mNumIndices = Read_uint16_t(stream);
f.mIndices = [];
for (var a = 0; a < f.mNumIndices; ++a) {
if (mesh.mNumVertices < 1 << 16) {
f.mIndices[a] = Read_uint16_t(stream);
} else {
f.mIndices[a] = Read_unsigned_int(stream);
}
}
if (f.mNumIndices === 3) {
mesh.mIndexArray.push(f.mIndices[0]);
mesh.mIndexArray.push(f.mIndices[1]);
mesh.mIndexArray.push(f.mIndices[2]);
} else if (f.mNumIndices === 4) {
mesh.mIndexArray.push(f.mIndices[0]);
mesh.mIndexArray.push(f.mIndices[1]);
mesh.mIndexArray.push(f.mIndices[2]);
mesh.mIndexArray.push(f.mIndices[2]);
mesh.mIndexArray.push(f.mIndices[3]);
mesh.mIndexArray.push(f.mIndices[0]);
} else {
throw new Error("Sorry, can't currently triangulate polys. Use the triangulate preprocessor in Assimp.");
}
}
} // write bones
if (mesh.mNumBones) {
mesh.mBones = [];
for (var a = 0; a < mesh.mNumBones; ++a) {
mesh.mBones[a] = new aiBone();
ReadBinaryBone(stream, mesh.mBones[a]);
}
}
}
function ReadBinaryMaterialProperty(stream, prop) {
var chunkID = Read_uint32_t(stream);
ai_assert(chunkID == ASSBIN_CHUNK_AIMATERIALPROPERTY);
/*uint32_t size =*/
Read_uint32_t(stream);
prop.mKey = Read_aiString(stream);
prop.mSemantic = Read_unsigned_int(stream);
prop.mIndex = Read_unsigned_int(stream);
prop.mDataLength = Read_unsigned_int(stream);
prop.mType = Read_unsigned_int(stream);
prop.mData = [];
stream.ReadBytes(prop.mData, 1, prop.mDataLength);
} // -----------------------------------------------------------------------------------
function ReadBinaryMaterial(stream, mat) {
var chunkID = Read_uint32_t(stream);
ai_assert(chunkID == ASSBIN_CHUNK_AIMATERIAL);
/*uint32_t size =*/
Read_uint32_t(stream);
mat.mNumAllocated = mat.mNumProperties = Read_unsigned_int(stream);
if (mat.mNumProperties) {
if (mat.mProperties) {
delete mat.mProperties;
}
mat.mProperties = [];
for (var i = 0; i < mat.mNumProperties; ++i) {
mat.mProperties[i] = new aiMaterialProperty();
ReadBinaryMaterialProperty(stream, mat.mProperties[i]);
}
}
}
function ReadBinaryNodeAnim(stream, nd) {
var chunkID = Read_uint32_t(stream);
ai_assert(chunkID == ASSBIN_CHUNK_AINODEANIM);
/*uint32_t size =*/
Read_uint32_t(stream);
nd.mNodeName = Read_aiString(stream);
nd.mNumPositionKeys = Read_unsigned_int(stream);
nd.mNumRotationKeys = Read_unsigned_int(stream);
nd.mNumScalingKeys = Read_unsigned_int(stream);
nd.mPreState = Read_unsigned_int(stream);
nd.mPostState = Read_unsigned_int(stream);
if (nd.mNumPositionKeys) {
if (shortened) {
ReadBounds(stream, nd.mPositionKeys, nd.mNumPositionKeys);
} else {
// else write as usual
nd.mPositionKeys = [];
ReadArray_aiVectorKey(stream, nd.mPositionKeys, nd.mNumPositionKeys);
}
}
if (nd.mNumRotationKeys) {
if (shortened) {
ReadBounds(stream, nd.mRotationKeys, nd.mNumRotationKeys);
} else {
// else write as usual
nd.mRotationKeys = [];
ReadArray_aiQuatKey(stream, nd.mRotationKeys, nd.mNumRotationKeys);
}
}
if (nd.mNumScalingKeys) {
if (shortened) {
ReadBounds(stream, nd.mScalingKeys, nd.mNumScalingKeys);
} else {
// else write as usual
nd.mScalingKeys = [];
ReadArray_aiVectorKey(stream, nd.mScalingKeys, nd.mNumScalingKeys);
}
}
}
function ReadBinaryAnim(stream, anim) {
var chunkID = Read_uint32_t(stream);
ai_assert(chunkID == ASSBIN_CHUNK_AIANIMATION);
/*uint32_t size =*/
Read_uint32_t(stream);
anim.mName = Read_aiString(stream);
anim.mDuration = Read_double(stream);
anim.mTicksPerSecond = Read_double(stream);
anim.mNumChannels = Read_uns