UNPKG

bytev-charts-beta

Version:

基于echarts和JavaScript及ES6封装的一个可以直接调用的图表组件库,内置主题设计,简单快捷,且支持用户自定义配置; npm 安装方式: npm install bytev-charts 若启动提示还需额外install插件,则运行 npm install @babel/runtime-corejs2 即可;

97 lines (88 loc) 5.07 kB
import { Vector3 } from "../../../build/three.module.js"; var GeometryUtils = { /** * Generates 2D-Coordinates in a very fast way. * * Based on work by: * @link http://www.openprocessing.org/sketch/15493 * * @param center Center of Hilbert curve. * @param size Total width of Hilbert curve. * @param iterations Number of subdivisions. * @param v0 Corner index -X, -Z. * @param v1 Corner index -X, +Z. * @param v2 Corner index +X, +Z. * @param v3 Corner index +X, -Z. */ hilbert2D: function hilbert2D(center, size, iterations, v0, v1, v2, v3) { // Default Vars var center = center !== undefined ? center : new Vector3(0, 0, 0), size = size !== undefined ? size : 10, half = size / 2, iterations = iterations !== undefined ? iterations : 1, v0 = v0 !== undefined ? v0 : 0, v1 = v1 !== undefined ? v1 : 1, v2 = v2 !== undefined ? v2 : 2, v3 = v3 !== undefined ? v3 : 3; var vec_s = [new Vector3(center.x - half, center.y, center.z - half), new Vector3(center.x - half, center.y, center.z + half), new Vector3(center.x + half, center.y, center.z + half), new Vector3(center.x + half, center.y, center.z - half)]; var vec = [vec_s[v0], vec_s[v1], vec_s[v2], vec_s[v3]]; // Recurse iterations if (0 <= --iterations) { var tmp = []; Array.prototype.push.apply(tmp, GeometryUtils.hilbert2D(vec[0], half, iterations, v0, v3, v2, v1)); Array.prototype.push.apply(tmp, GeometryUtils.hilbert2D(vec[1], half, iterations, v0, v1, v2, v3)); Array.prototype.push.apply(tmp, GeometryUtils.hilbert2D(vec[2], half, iterations, v0, v1, v2, v3)); Array.prototype.push.apply(tmp, GeometryUtils.hilbert2D(vec[3], half, iterations, v2, v1, v0, v3)); // Return recursive call return tmp; } // Return complete Hilbert Curve. return vec; }, /** * Generates 3D-Coordinates in a very fast way. * * Based on work by: * @link http://www.openprocessing.org/visuals/?visualID=15599 * * @param center Center of Hilbert curve. * @param size Total width of Hilbert curve. * @param iterations Number of subdivisions. * @param v0 Corner index -X, +Y, -Z. * @param v1 Corner index -X, +Y, +Z. * @param v2 Corner index -X, -Y, +Z. * @param v3 Corner index -X, -Y, -Z. * @param v4 Corner index +X, -Y, -Z. * @param v5 Corner index +X, -Y, +Z. * @param v6 Corner index +X, +Y, +Z. * @param v7 Corner index +X, +Y, -Z. */ hilbert3D: function hilbert3D(center, size, iterations, v0, v1, v2, v3, v4, v5, v6, v7) { // Default Vars var center = center !== undefined ? center : new Vector3(0, 0, 0), size = size !== undefined ? size : 10, half = size / 2, iterations = iterations !== undefined ? iterations : 1, v0 = v0 !== undefined ? v0 : 0, v1 = v1 !== undefined ? v1 : 1, v2 = v2 !== undefined ? v2 : 2, v3 = v3 !== undefined ? v3 : 3, v4 = v4 !== undefined ? v4 : 4, v5 = v5 !== undefined ? v5 : 5, v6 = v6 !== undefined ? v6 : 6, v7 = v7 !== undefined ? v7 : 7; var vec_s = [new Vector3(center.x - half, center.y + half, center.z - half), new Vector3(center.x - half, center.y + half, center.z + half), new Vector3(center.x - half, center.y - half, center.z + half), new Vector3(center.x - half, center.y - half, center.z - half), new Vector3(center.x + half, center.y - half, center.z - half), new Vector3(center.x + half, center.y - half, center.z + half), new Vector3(center.x + half, center.y + half, center.z + half), new Vector3(center.x + half, center.y + half, center.z - half)]; var vec = [vec_s[v0], vec_s[v1], vec_s[v2], vec_s[v3], vec_s[v4], vec_s[v5], vec_s[v6], vec_s[v7]]; // Recurse iterations if (--iterations >= 0) { var tmp = []; Array.prototype.push.apply(tmp, GeometryUtils.hilbert3D(vec[0], half, iterations, v0, v3, v4, v7, v6, v5, v2, v1)); Array.prototype.push.apply(tmp, GeometryUtils.hilbert3D(vec[1], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3)); Array.prototype.push.apply(tmp, GeometryUtils.hilbert3D(vec[2], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3)); Array.prototype.push.apply(tmp, GeometryUtils.hilbert3D(vec[3], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5)); Array.prototype.push.apply(tmp, GeometryUtils.hilbert3D(vec[4], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5)); Array.prototype.push.apply(tmp, GeometryUtils.hilbert3D(vec[5], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7)); Array.prototype.push.apply(tmp, GeometryUtils.hilbert3D(vec[6], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7)); Array.prototype.push.apply(tmp, GeometryUtils.hilbert3D(vec[7], half, iterations, v6, v5, v2, v1, v0, v3, v4, v7)); // Return recursive call return tmp; } // Return complete Hilbert Curve. return vec; } }; export { GeometryUtils };