bytev-charts-beta
Version:
基于echarts和JavaScript及ES6封装的一个可以直接调用的图表组件库,内置主题设计,简单快捷,且支持用户自定义配置; npm 安装方式: npm install bytev-charts 若启动提示还需额外install插件,则运行 npm install @babel/runtime-corejs2 即可;
520 lines (436 loc) • 24.1 kB
JavaScript
import _parseInt from "@babel/runtime-corejs2/core-js/parse-int";
import _Object$create from "@babel/runtime-corejs2/core-js/object/create";
import "core-js/modules/es.array.iterator.js";
import "core-js/modules/es.array-buffer.slice.js";
import "core-js/modules/es.object.to-string.js";
import "core-js/modules/es.typed-array.uint8-array.js";
import "core-js/modules/es.typed-array.copy-within.js";
import "core-js/modules/es.typed-array.every.js";
import "core-js/modules/es.typed-array.fill.js";
import "core-js/modules/es.typed-array.filter.js";
import "core-js/modules/es.typed-array.find.js";
import "core-js/modules/es.typed-array.find-index.js";
import "core-js/modules/es.typed-array.for-each.js";
import "core-js/modules/es.typed-array.includes.js";
import "core-js/modules/es.typed-array.index-of.js";
import "core-js/modules/es.typed-array.iterator.js";
import "core-js/modules/es.typed-array.join.js";
import "core-js/modules/es.typed-array.last-index-of.js";
import "core-js/modules/es.typed-array.map.js";
import "core-js/modules/es.typed-array.reduce.js";
import "core-js/modules/es.typed-array.reduce-right.js";
import "core-js/modules/es.typed-array.reverse.js";
import "core-js/modules/es.typed-array.set.js";
import "core-js/modules/es.typed-array.slice.js";
import "core-js/modules/es.typed-array.some.js";
import "core-js/modules/es.typed-array.sort.js";
import "core-js/modules/es.typed-array.subarray.js";
import "core-js/modules/es.typed-array.to-locale-string.js";
import "core-js/modules/es.typed-array.to-string.js";
import "core-js/modules/es.typed-array.int8-array.js";
import "core-js/modules/es.typed-array.int16-array.js";
import "core-js/modules/es.typed-array.uint16-array.js";
import "core-js/modules/es.typed-array.float32-array.js";
import "core-js/modules/es.number.constructor.js";
import "core-js/modules/es.array.join.js";
/**
* Octahedron and Quantization encodings based on work by:
*
* @link https://github.com/tsherif/mesh-quantization-example
*
*/
import { BufferAttribute, Matrix3, Matrix4, MeshPhongMaterial, ShaderChunk, ShaderLib, UniformsUtils, Vector3 } from "../../../build/three.module.js";
var GeometryCompressionUtils = {
/**
* Make the input mesh.geometry's normal attribute encoded and compressed by 3 different methods.
* Also will change the mesh.material to `PackedPhongMaterial` which let the vertex shader program decode the normal data.
*
* @param {THREE.Mesh} mesh
* @param {String} encodeMethod "DEFAULT" || "OCT1Byte" || "OCT2Byte" || "ANGLES"
*
*/
compressNormals: function compressNormals(mesh, encodeMethod) {
if (!mesh.geometry) {
console.error("Mesh must contain geometry. ");
}
var normal = mesh.geometry.attributes.normal;
if (!normal) {
console.error("Geometry must contain normal attribute. ");
}
if (normal.isPacked) return;
if (normal.itemSize != 3) {
console.error("normal.itemSize is not 3, which cannot be encoded. ");
}
var array = normal.array;
var count = normal.count;
var result;
if (encodeMethod == "DEFAULT") {
// TODO: Add 1 byte to the result, making the encoded length to be 4 bytes.
result = new Uint8Array(count * 3);
for (var idx = 0; idx < array.length; idx += 3) {
var encoded = void 0;
encoded = this.EncodingFuncs.defaultEncode(array[idx], array[idx + 1], array[idx + 2], 1);
result[idx + 0] = encoded[0];
result[idx + 1] = encoded[1];
result[idx + 2] = encoded[2];
}
mesh.geometry.setAttribute('normal', new BufferAttribute(result, 3, true));
mesh.geometry.attributes.normal.bytes = result.length * 1;
} else if (encodeMethod == "OCT1Byte") {
/**
* It is not recommended to use 1-byte octahedron normals encoding unless you want to extremely reduce the memory usage
* As it makes vertex data not aligned to a 4 byte boundary which may harm some WebGL implementations and sometimes the normal distortion is visible
* Please refer to @zeux 's comments in https://github.com/mrdoob/three.js/pull/18208
*/
result = new Int8Array(count * 2);
for (var _idx = 0; _idx < array.length; _idx += 3) {
var _encoded = void 0;
_encoded = this.EncodingFuncs.octEncodeBest(array[_idx], array[_idx + 1], array[_idx + 2], 1);
result[_idx / 3 * 2 + 0] = _encoded[0];
result[_idx / 3 * 2 + 1] = _encoded[1];
}
mesh.geometry.setAttribute('normal', new BufferAttribute(result, 2, true));
mesh.geometry.attributes.normal.bytes = result.length * 1;
} else if (encodeMethod == "OCT2Byte") {
result = new Int16Array(count * 2);
for (var _idx2 = 0; _idx2 < array.length; _idx2 += 3) {
var _encoded2 = void 0;
_encoded2 = this.EncodingFuncs.octEncodeBest(array[_idx2], array[_idx2 + 1], array[_idx2 + 2], 2);
result[_idx2 / 3 * 2 + 0] = _encoded2[0];
result[_idx2 / 3 * 2 + 1] = _encoded2[1];
}
mesh.geometry.setAttribute('normal', new BufferAttribute(result, 2, true));
mesh.geometry.attributes.normal.bytes = result.length * 2;
} else if (encodeMethod == "ANGLES") {
result = new Uint16Array(count * 2);
for (var _idx3 = 0; _idx3 < array.length; _idx3 += 3) {
var _encoded3 = void 0;
_encoded3 = this.EncodingFuncs.anglesEncode(array[_idx3], array[_idx3 + 1], array[_idx3 + 2]);
result[_idx3 / 3 * 2 + 0] = _encoded3[0];
result[_idx3 / 3 * 2 + 1] = _encoded3[1];
}
mesh.geometry.setAttribute('normal', new BufferAttribute(result, 2, true));
mesh.geometry.attributes.normal.bytes = result.length * 2;
} else {
console.error("Unrecognized encoding method, should be `DEFAULT` or `ANGLES` or `OCT`. ");
}
mesh.geometry.attributes.normal.needsUpdate = true;
mesh.geometry.attributes.normal.isPacked = true;
mesh.geometry.attributes.normal.packingMethod = encodeMethod; // modify material
if (!(mesh.material instanceof PackedPhongMaterial)) {
mesh.material = new PackedPhongMaterial().copy(mesh.material);
}
if (encodeMethod == "ANGLES") {
mesh.material.defines.USE_PACKED_NORMAL = 0;
}
if (encodeMethod == "OCT1Byte") {
mesh.material.defines.USE_PACKED_NORMAL = 1;
}
if (encodeMethod == "OCT2Byte") {
mesh.material.defines.USE_PACKED_NORMAL = 1;
}
if (encodeMethod == "DEFAULT") {
mesh.material.defines.USE_PACKED_NORMAL = 2;
}
},
/**
* Make the input mesh.geometry's position attribute encoded and compressed.
* Also will change the mesh.material to `PackedPhongMaterial` which let the vertex shader program decode the position data.
*
* @param {THREE.Mesh} mesh
*
*/
compressPositions: function compressPositions(mesh) {
if (!mesh.geometry) {
console.error("Mesh must contain geometry. ");
}
var position = mesh.geometry.attributes.position;
if (!position) {
console.error("Geometry must contain position attribute. ");
}
if (position.isPacked) return;
if (position.itemSize != 3) {
console.error("position.itemSize is not 3, which cannot be packed. ");
}
var array = position.array;
var encodingBytes = 2;
var result = this.EncodingFuncs.quantizedEncode(array, encodingBytes);
var quantized = result.quantized;
var decodeMat = result.decodeMat; // IMPORTANT: calculate original geometry bounding info first, before updating packed positions
if (mesh.geometry.boundingBox == null) mesh.geometry.computeBoundingBox();
if (mesh.geometry.boundingSphere == null) mesh.geometry.computeBoundingSphere();
mesh.geometry.setAttribute('position', new BufferAttribute(quantized, 3));
mesh.geometry.attributes.position.isPacked = true;
mesh.geometry.attributes.position.needsUpdate = true;
mesh.geometry.attributes.position.bytes = quantized.length * encodingBytes; // modify material
if (!(mesh.material instanceof PackedPhongMaterial)) {
mesh.material = new PackedPhongMaterial().copy(mesh.material);
}
mesh.material.defines.USE_PACKED_POSITION = 0;
mesh.material.uniforms.quantizeMatPos.value = decodeMat;
mesh.material.uniforms.quantizeMatPos.needsUpdate = true;
},
/**
* Make the input mesh.geometry's uv attribute encoded and compressed.
* Also will change the mesh.material to `PackedPhongMaterial` which let the vertex shader program decode the uv data.
*
* @param {THREE.Mesh} mesh
*
*/
compressUvs: function compressUvs(mesh) {
if (!mesh.geometry) {
console.error("Mesh must contain geometry property. ");
}
var uvs = mesh.geometry.attributes.uv;
if (!uvs) {
console.error("Geometry must contain uv attribute. ");
}
if (uvs.isPacked) return;
var range = {
min: Infinity,
max: -Infinity
};
var array = uvs.array;
for (var i = 0; i < array.length; i++) {
range.min = Math.min(range.min, array[i]);
range.max = Math.max(range.max, array[i]);
}
var result;
if (range.min >= -1.0 && range.max <= 1.0) {
// use default encoding method
result = new Uint16Array(array.length);
for (var _i = 0; _i < array.length; _i += 2) {
var encoded = this.EncodingFuncs.defaultEncode(array[_i], array[_i + 1], 0, 2);
result[_i] = encoded[0];
result[_i + 1] = encoded[1];
}
mesh.geometry.setAttribute('uv', new BufferAttribute(result, 2, true));
mesh.geometry.attributes.uv.isPacked = true;
mesh.geometry.attributes.uv.needsUpdate = true;
mesh.geometry.attributes.uv.bytes = result.length * 2;
if (!(mesh.material instanceof PackedPhongMaterial)) {
mesh.material = new PackedPhongMaterial().copy(mesh.material);
}
mesh.material.defines.USE_PACKED_UV = 0;
} else {
// use quantized encoding method
result = this.EncodingFuncs.quantizedEncodeUV(array, 2);
mesh.geometry.setAttribute('uv', new BufferAttribute(result.quantized, 2));
mesh.geometry.attributes.uv.isPacked = true;
mesh.geometry.attributes.uv.needsUpdate = true;
mesh.geometry.attributes.uv.bytes = result.quantized.length * 2;
if (!(mesh.material instanceof PackedPhongMaterial)) {
mesh.material = new PackedPhongMaterial().copy(mesh.material);
}
mesh.material.defines.USE_PACKED_UV = 1;
mesh.material.uniforms.quantizeMatUV.value = result.decodeMat;
mesh.material.uniforms.quantizeMatUV.needsUpdate = true;
}
},
EncodingFuncs: {
defaultEncode: function defaultEncode(x, y, z, bytes) {
if (bytes == 1) {
var tmpx = Math.round((x + 1) * 0.5 * 255);
var tmpy = Math.round((y + 1) * 0.5 * 255);
var tmpz = Math.round((z + 1) * 0.5 * 255);
return new Uint8Array([tmpx, tmpy, tmpz]);
} else if (bytes == 2) {
var _tmpx = Math.round((x + 1) * 0.5 * 65535);
var _tmpy = Math.round((y + 1) * 0.5 * 65535);
var _tmpz = Math.round((z + 1) * 0.5 * 65535);
return new Uint16Array([_tmpx, _tmpy, _tmpz]);
} else {
console.error("number of bytes must be 1 or 2");
}
},
defaultDecode: function defaultDecode(array, bytes) {
if (bytes == 1) {
return [array[0] / 255 * 2.0 - 1.0, array[1] / 255 * 2.0 - 1.0, array[2] / 255 * 2.0 - 1.0];
} else if (bytes == 2) {
return [array[0] / 65535 * 2.0 - 1.0, array[1] / 65535 * 2.0 - 1.0, array[2] / 65535 * 2.0 - 1.0];
} else {
console.error("number of bytes must be 1 or 2");
}
},
// for `Angles` encoding
anglesEncode: function anglesEncode(x, y, z) {
var normal0 = _parseInt(0.5 * (1.0 + Math.atan2(y, x) / Math.PI) * 65535);
var normal1 = _parseInt(0.5 * (1.0 + z) * 65535);
return new Uint16Array([normal0, normal1]);
},
// for `Octahedron` encoding
octEncodeBest: function octEncodeBest(x, y, z, bytes) {
var oct, dec, best, currentCos, bestCos; // Test various combinations of ceil and floor
// to minimize rounding errors
best = oct = octEncodeVec3(x, y, z, "floor", "floor");
dec = octDecodeVec2(oct);
bestCos = dot(x, y, z, dec);
oct = octEncodeVec3(x, y, z, "ceil", "floor");
dec = octDecodeVec2(oct);
currentCos = dot(x, y, z, dec);
if (currentCos > bestCos) {
best = oct;
bestCos = currentCos;
}
oct = octEncodeVec3(x, y, z, "floor", "ceil");
dec = octDecodeVec2(oct);
currentCos = dot(x, y, z, dec);
if (currentCos > bestCos) {
best = oct;
bestCos = currentCos;
}
oct = octEncodeVec3(x, y, z, "ceil", "ceil");
dec = octDecodeVec2(oct);
currentCos = dot(x, y, z, dec);
if (currentCos > bestCos) {
best = oct;
}
return best;
function octEncodeVec3(x0, y0, z0, xfunc, yfunc) {
var x = x0 / (Math.abs(x0) + Math.abs(y0) + Math.abs(z0));
var y = y0 / (Math.abs(x0) + Math.abs(y0) + Math.abs(z0));
if (z < 0) {
var tempx = (1 - Math.abs(y)) * (x >= 0 ? 1 : -1);
var tempy = (1 - Math.abs(x)) * (y >= 0 ? 1 : -1);
x = tempx;
y = tempy;
var diff = 1 - Math.abs(x) - Math.abs(y);
if (diff > 0) {
diff += 0.001;
x += x > 0 ? diff / 2 : -diff / 2;
y += y > 0 ? diff / 2 : -diff / 2;
}
}
if (bytes == 1) {
return new Int8Array([Math[xfunc](x * 127.5 + (x < 0 ? 1 : 0)), Math[yfunc](y * 127.5 + (y < 0 ? 1 : 0))]);
}
if (bytes == 2) {
return new Int16Array([Math[xfunc](x * 32767.5 + (x < 0 ? 1 : 0)), Math[yfunc](y * 32767.5 + (y < 0 ? 1 : 0))]);
}
}
function octDecodeVec2(oct) {
var x = oct[0];
var y = oct[1];
if (bytes == 1) {
x /= x < 0 ? 127 : 128;
y /= y < 0 ? 127 : 128;
} else if (bytes == 2) {
x /= x < 0 ? 32767 : 32768;
y /= y < 0 ? 32767 : 32768;
}
var z = 1 - Math.abs(x) - Math.abs(y);
if (z < 0) {
var tmpx = x;
x = (1 - Math.abs(y)) * (x >= 0 ? 1 : -1);
y = (1 - Math.abs(tmpx)) * (y >= 0 ? 1 : -1);
}
var length = Math.sqrt(x * x + y * y + z * z);
return [x / length, y / length, z / length];
}
function dot(x, y, z, vec3) {
return x * vec3[0] + y * vec3[1] + z * vec3[2];
}
},
quantizedEncode: function quantizedEncode(array, bytes) {
var quantized, segments;
if (bytes == 1) {
quantized = new Uint8Array(array.length);
segments = 255;
} else if (bytes == 2) {
quantized = new Uint16Array(array.length);
segments = 65535;
} else {
console.error("number of bytes error! ");
}
var decodeMat = new Matrix4();
var min = new Float32Array(3);
var max = new Float32Array(3);
min[0] = min[1] = min[2] = Number.MAX_VALUE;
max[0] = max[1] = max[2] = -Number.MAX_VALUE;
for (var i = 0; i < array.length; i += 3) {
min[0] = Math.min(min[0], array[i + 0]);
min[1] = Math.min(min[1], array[i + 1]);
min[2] = Math.min(min[2], array[i + 2]);
max[0] = Math.max(max[0], array[i + 0]);
max[1] = Math.max(max[1], array[i + 1]);
max[2] = Math.max(max[2], array[i + 2]);
}
decodeMat.scale(new Vector3((max[0] - min[0]) / segments, (max[1] - min[1]) / segments, (max[2] - min[2]) / segments));
decodeMat.elements[12] = min[0];
decodeMat.elements[13] = min[1];
decodeMat.elements[14] = min[2];
decodeMat.transpose();
var multiplier = new Float32Array([max[0] !== min[0] ? segments / (max[0] - min[0]) : 0, max[1] !== min[1] ? segments / (max[1] - min[1]) : 0, max[2] !== min[2] ? segments / (max[2] - min[2]) : 0]);
for (var _i2 = 0; _i2 < array.length; _i2 += 3) {
quantized[_i2 + 0] = Math.floor((array[_i2 + 0] - min[0]) * multiplier[0]);
quantized[_i2 + 1] = Math.floor((array[_i2 + 1] - min[1]) * multiplier[1]);
quantized[_i2 + 2] = Math.floor((array[_i2 + 2] - min[2]) * multiplier[2]);
}
return {
quantized: quantized,
decodeMat: decodeMat
};
},
quantizedEncodeUV: function quantizedEncodeUV(array, bytes) {
var quantized, segments;
if (bytes == 1) {
quantized = new Uint8Array(array.length);
segments = 255;
} else if (bytes == 2) {
quantized = new Uint16Array(array.length);
segments = 65535;
} else {
console.error("number of bytes error! ");
}
var decodeMat = new Matrix3();
var min = new Float32Array(2);
var max = new Float32Array(2);
min[0] = min[1] = Number.MAX_VALUE;
max[0] = max[1] = -Number.MAX_VALUE;
for (var i = 0; i < array.length; i += 2) {
min[0] = Math.min(min[0], array[i + 0]);
min[1] = Math.min(min[1], array[i + 1]);
max[0] = Math.max(max[0], array[i + 0]);
max[1] = Math.max(max[1], array[i + 1]);
}
decodeMat.scale((max[0] - min[0]) / segments, (max[1] - min[1]) / segments);
decodeMat.elements[6] = min[0];
decodeMat.elements[7] = min[1];
decodeMat.transpose();
var multiplier = new Float32Array([max[0] !== min[0] ? segments / (max[0] - min[0]) : 0, max[1] !== min[1] ? segments / (max[1] - min[1]) : 0]);
for (var _i3 = 0; _i3 < array.length; _i3 += 2) {
quantized[_i3 + 0] = Math.floor((array[_i3 + 0] - min[0]) * multiplier[0]);
quantized[_i3 + 1] = Math.floor((array[_i3 + 1] - min[1]) * multiplier[1]);
}
return {
quantized: quantized,
decodeMat: decodeMat
};
}
}
};
/**
* `PackedPhongMaterial` inherited from THREE.MeshPhongMaterial
*
* @param {Object} parameters
*/
function PackedPhongMaterial(parameters) {
MeshPhongMaterial.call(this);
this.defines = {};
this.type = 'PackedPhongMaterial';
this.uniforms = UniformsUtils.merge([ShaderLib.phong.uniforms, {
quantizeMatPos: {
value: null
},
quantizeMatUV: {
value: null
}
}]);
this.vertexShader = ["#define PHONG", "varying vec3 vViewPosition;", "#ifndef FLAT_SHADED", "varying vec3 vNormal;", "#endif", ShaderChunk.common, ShaderChunk.uv_pars_vertex, ShaderChunk.uv2_pars_vertex, ShaderChunk.displacementmap_pars_vertex, ShaderChunk.envmap_pars_vertex, ShaderChunk.color_pars_vertex, ShaderChunk.fog_pars_vertex, ShaderChunk.morphtarget_pars_vertex, ShaderChunk.skinning_pars_vertex, ShaderChunk.shadowmap_pars_vertex, ShaderChunk.logdepthbuf_pars_vertex, ShaderChunk.clipping_planes_pars_vertex, "#ifdef USE_PACKED_NORMAL\n\t\t\t#if USE_PACKED_NORMAL == 0\n\t\t\t\tvec3 decodeNormal(vec3 packedNormal)\n\t\t\t\t{\n\t\t\t\t\tfloat x = packedNormal.x * 2.0 - 1.0;\n\t\t\t\t\tfloat y = packedNormal.y * 2.0 - 1.0;\n\t\t\t\t\tvec2 scth = vec2(sin(x * PI), cos(x * PI));\n\t\t\t\t\tvec2 scphi = vec2(sqrt(1.0 - y * y), y);\n\t\t\t\t\treturn normalize( vec3(scth.y * scphi.x, scth.x * scphi.x, scphi.y) );\n\t\t\t\t}\n\t\t\t#endif\n\n\t\t\t#if USE_PACKED_NORMAL == 1\n\t\t\t\tvec3 decodeNormal(vec3 packedNormal)\n\t\t\t\t{\n\t\t\t\t\tvec3 v = vec3(packedNormal.xy, 1.0 - abs(packedNormal.x) - abs(packedNormal.y));\n\t\t\t\t\tif (v.z < 0.0)\n\t\t\t\t\t{\n\t\t\t\t\t\tv.xy = (1.0 - abs(v.yx)) * vec2((v.x >= 0.0) ? +1.0 : -1.0, (v.y >= 0.0) ? +1.0 : -1.0);\n\t\t\t\t\t}\n\t\t\t\t\treturn normalize(v);\n\t\t\t\t}\n\t\t\t#endif\n\n\t\t\t#if USE_PACKED_NORMAL == 2\n\t\t\t\tvec3 decodeNormal(vec3 packedNormal)\n\t\t\t\t{\n\t\t\t\t\tvec3 v = (packedNormal * 2.0) - 1.0;\n\t\t\t\t\treturn normalize(v);\n\t\t\t\t}\n\t\t\t#endif\n\t\t#endif", "#ifdef USE_PACKED_POSITION\n\t\t\t#if USE_PACKED_POSITION == 0\n\t\t\t\tuniform mat4 quantizeMatPos;\n\t\t\t#endif\n\t\t#endif", "#ifdef USE_PACKED_UV\n\t\t\t#if USE_PACKED_UV == 1\n\t\t\t\tuniform mat3 quantizeMatUV;\n\t\t\t#endif\n\t\t#endif", "#ifdef USE_PACKED_UV\n\t\t\t#if USE_PACKED_UV == 0\n\t\t\t\tvec2 decodeUV(vec2 packedUV)\n\t\t\t\t{\n\t\t\t\t\tvec2 uv = (packedUV * 2.0) - 1.0;\n\t\t\t\t\treturn uv;\n\t\t\t\t}\n\t\t\t#endif\n\n\t\t\t#if USE_PACKED_UV == 1\n\t\t\t\tvec2 decodeUV(vec2 packedUV)\n\t\t\t\t{\n\t\t\t\t\tvec2 uv = ( vec3(packedUV, 1.0) * quantizeMatUV ).xy;\n\t\t\t\t\treturn uv;\n\t\t\t\t}\n\t\t\t#endif\n\t\t#endif", "void main() {", ShaderChunk.uv_vertex, "#ifdef USE_UV\n\t\t\t#ifdef USE_PACKED_UV\n\t\t\t\tvUv = decodeUV(vUv);\n\t\t\t#endif\n\t\t#endif", ShaderChunk.uv2_vertex, ShaderChunk.color_vertex, ShaderChunk.beginnormal_vertex, "#ifdef USE_PACKED_NORMAL\n\t\t\tobjectNormal = decodeNormal(objectNormal);\n\t\t#endif\n\n\t\t#ifdef USE_TANGENT\n\t\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t\t#endif\n\t\t", ShaderChunk.morphnormal_vertex, ShaderChunk.skinbase_vertex, ShaderChunk.skinnormal_vertex, ShaderChunk.defaultnormal_vertex, "#ifndef FLAT_SHADED", " vNormal = normalize( transformedNormal );", "#endif", ShaderChunk.begin_vertex, "#ifdef USE_PACKED_POSITION\n\t\t\t#if USE_PACKED_POSITION == 0\n\t\t\t\ttransformed = ( vec4(transformed, 1.0) * quantizeMatPos ).xyz;\n\t\t\t#endif\n\t\t#endif", ShaderChunk.morphtarget_vertex, ShaderChunk.skinning_vertex, ShaderChunk.displacementmap_vertex, ShaderChunk.project_vertex, ShaderChunk.logdepthbuf_vertex, ShaderChunk.clipping_planes_vertex, "vViewPosition = - mvPosition.xyz;", ShaderChunk.worldpos_vertex, ShaderChunk.envmap_vertex, ShaderChunk.shadowmap_vertex, ShaderChunk.fog_vertex, "}"].join("\n"); // Use the original MeshPhongMaterial's fragmentShader.
this.fragmentShader = ["#define PHONG", "uniform vec3 diffuse;", "uniform vec3 emissive;", "uniform vec3 specular;", "uniform float shininess;", "uniform float opacity;", ShaderChunk.common, ShaderChunk.packing, ShaderChunk.dithering_pars_fragment, ShaderChunk.color_pars_fragment, ShaderChunk.uv_pars_fragment, ShaderChunk.uv2_pars_fragment, ShaderChunk.map_pars_fragment, ShaderChunk.alphamap_pars_fragment, ShaderChunk.aomap_pars_fragment, ShaderChunk.lightmap_pars_fragment, ShaderChunk.emissivemap_pars_fragment, ShaderChunk.envmap_common_pars_fragment, ShaderChunk.envmap_pars_fragment, ShaderChunk.cube_uv_reflection_fragment, ShaderChunk.fog_pars_fragment, ShaderChunk.bsdfs, ShaderChunk.lights_pars_begin, ShaderChunk.lights_phong_pars_fragment, ShaderChunk.shadowmap_pars_fragment, ShaderChunk.bumpmap_pars_fragment, ShaderChunk.normalmap_pars_fragment, ShaderChunk.specularmap_pars_fragment, ShaderChunk.logdepthbuf_pars_fragment, ShaderChunk.clipping_planes_pars_fragment, "void main() {", ShaderChunk.clipping_planes_fragment, "vec4 diffuseColor = vec4( diffuse, opacity );", "ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );", "vec3 totalEmissiveRadiance = emissive;", ShaderChunk.logdepthbuf_fragment, ShaderChunk.map_fragment, ShaderChunk.color_fragment, ShaderChunk.alphamap_fragment, ShaderChunk.alphatest_fragment, ShaderChunk.specularmap_fragment, ShaderChunk.normal_fragment_begin, ShaderChunk.normal_fragment_maps, ShaderChunk.emissivemap_fragment, // accumulation
ShaderChunk.lights_phong_fragment, ShaderChunk.lights_fragment_begin, ShaderChunk.lights_fragment_maps, ShaderChunk.lights_fragment_end, // modulation
ShaderChunk.aomap_fragment, "vec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;", ShaderChunk.envmap_fragment, "gl_FragColor = vec4( outgoingLight, diffuseColor.a );", ShaderChunk.tonemapping_fragment, ShaderChunk.encodings_fragment, ShaderChunk.fog_fragment, ShaderChunk.premultiplied_alpha_fragment, ShaderChunk.dithering_fragment, "}"].join("\n");
this.setValues(parameters);
}
PackedPhongMaterial.prototype = _Object$create(MeshPhongMaterial.prototype);
export { GeometryCompressionUtils, PackedPhongMaterial };