UNPKG

bytev-charts-beta

Version:

基于echarts和JavaScript及ES6封装的一个可以直接调用的图表组件库,内置主题设计,简单快捷,且支持用户自定义配置; npm 安装方式: npm install bytev-charts 若启动提示还需额外install插件,则运行 npm install @babel/runtime-corejs2 即可;

520 lines (436 loc) 24.1 kB
import _parseInt from "@babel/runtime-corejs2/core-js/parse-int"; import _Object$create from "@babel/runtime-corejs2/core-js/object/create"; import "core-js/modules/es.array.iterator.js"; import "core-js/modules/es.array-buffer.slice.js"; import "core-js/modules/es.object.to-string.js"; import "core-js/modules/es.typed-array.uint8-array.js"; import "core-js/modules/es.typed-array.copy-within.js"; import "core-js/modules/es.typed-array.every.js"; import "core-js/modules/es.typed-array.fill.js"; import "core-js/modules/es.typed-array.filter.js"; import "core-js/modules/es.typed-array.find.js"; import "core-js/modules/es.typed-array.find-index.js"; import "core-js/modules/es.typed-array.for-each.js"; import "core-js/modules/es.typed-array.includes.js"; import "core-js/modules/es.typed-array.index-of.js"; import "core-js/modules/es.typed-array.iterator.js"; import "core-js/modules/es.typed-array.join.js"; import "core-js/modules/es.typed-array.last-index-of.js"; import "core-js/modules/es.typed-array.map.js"; import "core-js/modules/es.typed-array.reduce.js"; import "core-js/modules/es.typed-array.reduce-right.js"; import "core-js/modules/es.typed-array.reverse.js"; import "core-js/modules/es.typed-array.set.js"; import "core-js/modules/es.typed-array.slice.js"; import "core-js/modules/es.typed-array.some.js"; import "core-js/modules/es.typed-array.sort.js"; import "core-js/modules/es.typed-array.subarray.js"; import "core-js/modules/es.typed-array.to-locale-string.js"; import "core-js/modules/es.typed-array.to-string.js"; import "core-js/modules/es.typed-array.int8-array.js"; import "core-js/modules/es.typed-array.int16-array.js"; import "core-js/modules/es.typed-array.uint16-array.js"; import "core-js/modules/es.typed-array.float32-array.js"; import "core-js/modules/es.number.constructor.js"; import "core-js/modules/es.array.join.js"; /** * Octahedron and Quantization encodings based on work by: * * @link https://github.com/tsherif/mesh-quantization-example * */ import { BufferAttribute, Matrix3, Matrix4, MeshPhongMaterial, ShaderChunk, ShaderLib, UniformsUtils, Vector3 } from "../../../build/three.module.js"; var GeometryCompressionUtils = { /** * Make the input mesh.geometry's normal attribute encoded and compressed by 3 different methods. * Also will change the mesh.material to `PackedPhongMaterial` which let the vertex shader program decode the normal data. * * @param {THREE.Mesh} mesh * @param {String} encodeMethod "DEFAULT" || "OCT1Byte" || "OCT2Byte" || "ANGLES" * */ compressNormals: function compressNormals(mesh, encodeMethod) { if (!mesh.geometry) { console.error("Mesh must contain geometry. "); } var normal = mesh.geometry.attributes.normal; if (!normal) { console.error("Geometry must contain normal attribute. "); } if (normal.isPacked) return; if (normal.itemSize != 3) { console.error("normal.itemSize is not 3, which cannot be encoded. "); } var array = normal.array; var count = normal.count; var result; if (encodeMethod == "DEFAULT") { // TODO: Add 1 byte to the result, making the encoded length to be 4 bytes. result = new Uint8Array(count * 3); for (var idx = 0; idx < array.length; idx += 3) { var encoded = void 0; encoded = this.EncodingFuncs.defaultEncode(array[idx], array[idx + 1], array[idx + 2], 1); result[idx + 0] = encoded[0]; result[idx + 1] = encoded[1]; result[idx + 2] = encoded[2]; } mesh.geometry.setAttribute('normal', new BufferAttribute(result, 3, true)); mesh.geometry.attributes.normal.bytes = result.length * 1; } else if (encodeMethod == "OCT1Byte") { /** * It is not recommended to use 1-byte octahedron normals encoding unless you want to extremely reduce the memory usage * As it makes vertex data not aligned to a 4 byte boundary which may harm some WebGL implementations and sometimes the normal distortion is visible * Please refer to @zeux 's comments in https://github.com/mrdoob/three.js/pull/18208 */ result = new Int8Array(count * 2); for (var _idx = 0; _idx < array.length; _idx += 3) { var _encoded = void 0; _encoded = this.EncodingFuncs.octEncodeBest(array[_idx], array[_idx + 1], array[_idx + 2], 1); result[_idx / 3 * 2 + 0] = _encoded[0]; result[_idx / 3 * 2 + 1] = _encoded[1]; } mesh.geometry.setAttribute('normal', new BufferAttribute(result, 2, true)); mesh.geometry.attributes.normal.bytes = result.length * 1; } else if (encodeMethod == "OCT2Byte") { result = new Int16Array(count * 2); for (var _idx2 = 0; _idx2 < array.length; _idx2 += 3) { var _encoded2 = void 0; _encoded2 = this.EncodingFuncs.octEncodeBest(array[_idx2], array[_idx2 + 1], array[_idx2 + 2], 2); result[_idx2 / 3 * 2 + 0] = _encoded2[0]; result[_idx2 / 3 * 2 + 1] = _encoded2[1]; } mesh.geometry.setAttribute('normal', new BufferAttribute(result, 2, true)); mesh.geometry.attributes.normal.bytes = result.length * 2; } else if (encodeMethod == "ANGLES") { result = new Uint16Array(count * 2); for (var _idx3 = 0; _idx3 < array.length; _idx3 += 3) { var _encoded3 = void 0; _encoded3 = this.EncodingFuncs.anglesEncode(array[_idx3], array[_idx3 + 1], array[_idx3 + 2]); result[_idx3 / 3 * 2 + 0] = _encoded3[0]; result[_idx3 / 3 * 2 + 1] = _encoded3[1]; } mesh.geometry.setAttribute('normal', new BufferAttribute(result, 2, true)); mesh.geometry.attributes.normal.bytes = result.length * 2; } else { console.error("Unrecognized encoding method, should be `DEFAULT` or `ANGLES` or `OCT`. "); } mesh.geometry.attributes.normal.needsUpdate = true; mesh.geometry.attributes.normal.isPacked = true; mesh.geometry.attributes.normal.packingMethod = encodeMethod; // modify material if (!(mesh.material instanceof PackedPhongMaterial)) { mesh.material = new PackedPhongMaterial().copy(mesh.material); } if (encodeMethod == "ANGLES") { mesh.material.defines.USE_PACKED_NORMAL = 0; } if (encodeMethod == "OCT1Byte") { mesh.material.defines.USE_PACKED_NORMAL = 1; } if (encodeMethod == "OCT2Byte") { mesh.material.defines.USE_PACKED_NORMAL = 1; } if (encodeMethod == "DEFAULT") { mesh.material.defines.USE_PACKED_NORMAL = 2; } }, /** * Make the input mesh.geometry's position attribute encoded and compressed. * Also will change the mesh.material to `PackedPhongMaterial` which let the vertex shader program decode the position data. * * @param {THREE.Mesh} mesh * */ compressPositions: function compressPositions(mesh) { if (!mesh.geometry) { console.error("Mesh must contain geometry. "); } var position = mesh.geometry.attributes.position; if (!position) { console.error("Geometry must contain position attribute. "); } if (position.isPacked) return; if (position.itemSize != 3) { console.error("position.itemSize is not 3, which cannot be packed. "); } var array = position.array; var encodingBytes = 2; var result = this.EncodingFuncs.quantizedEncode(array, encodingBytes); var quantized = result.quantized; var decodeMat = result.decodeMat; // IMPORTANT: calculate original geometry bounding info first, before updating packed positions if (mesh.geometry.boundingBox == null) mesh.geometry.computeBoundingBox(); if (mesh.geometry.boundingSphere == null) mesh.geometry.computeBoundingSphere(); mesh.geometry.setAttribute('position', new BufferAttribute(quantized, 3)); mesh.geometry.attributes.position.isPacked = true; mesh.geometry.attributes.position.needsUpdate = true; mesh.geometry.attributes.position.bytes = quantized.length * encodingBytes; // modify material if (!(mesh.material instanceof PackedPhongMaterial)) { mesh.material = new PackedPhongMaterial().copy(mesh.material); } mesh.material.defines.USE_PACKED_POSITION = 0; mesh.material.uniforms.quantizeMatPos.value = decodeMat; mesh.material.uniforms.quantizeMatPos.needsUpdate = true; }, /** * Make the input mesh.geometry's uv attribute encoded and compressed. * Also will change the mesh.material to `PackedPhongMaterial` which let the vertex shader program decode the uv data. * * @param {THREE.Mesh} mesh * */ compressUvs: function compressUvs(mesh) { if (!mesh.geometry) { console.error("Mesh must contain geometry property. "); } var uvs = mesh.geometry.attributes.uv; if (!uvs) { console.error("Geometry must contain uv attribute. "); } if (uvs.isPacked) return; var range = { min: Infinity, max: -Infinity }; var array = uvs.array; for (var i = 0; i < array.length; i++) { range.min = Math.min(range.min, array[i]); range.max = Math.max(range.max, array[i]); } var result; if (range.min >= -1.0 && range.max <= 1.0) { // use default encoding method result = new Uint16Array(array.length); for (var _i = 0; _i < array.length; _i += 2) { var encoded = this.EncodingFuncs.defaultEncode(array[_i], array[_i + 1], 0, 2); result[_i] = encoded[0]; result[_i + 1] = encoded[1]; } mesh.geometry.setAttribute('uv', new BufferAttribute(result, 2, true)); mesh.geometry.attributes.uv.isPacked = true; mesh.geometry.attributes.uv.needsUpdate = true; mesh.geometry.attributes.uv.bytes = result.length * 2; if (!(mesh.material instanceof PackedPhongMaterial)) { mesh.material = new PackedPhongMaterial().copy(mesh.material); } mesh.material.defines.USE_PACKED_UV = 0; } else { // use quantized encoding method result = this.EncodingFuncs.quantizedEncodeUV(array, 2); mesh.geometry.setAttribute('uv', new BufferAttribute(result.quantized, 2)); mesh.geometry.attributes.uv.isPacked = true; mesh.geometry.attributes.uv.needsUpdate = true; mesh.geometry.attributes.uv.bytes = result.quantized.length * 2; if (!(mesh.material instanceof PackedPhongMaterial)) { mesh.material = new PackedPhongMaterial().copy(mesh.material); } mesh.material.defines.USE_PACKED_UV = 1; mesh.material.uniforms.quantizeMatUV.value = result.decodeMat; mesh.material.uniforms.quantizeMatUV.needsUpdate = true; } }, EncodingFuncs: { defaultEncode: function defaultEncode(x, y, z, bytes) { if (bytes == 1) { var tmpx = Math.round((x + 1) * 0.5 * 255); var tmpy = Math.round((y + 1) * 0.5 * 255); var tmpz = Math.round((z + 1) * 0.5 * 255); return new Uint8Array([tmpx, tmpy, tmpz]); } else if (bytes == 2) { var _tmpx = Math.round((x + 1) * 0.5 * 65535); var _tmpy = Math.round((y + 1) * 0.5 * 65535); var _tmpz = Math.round((z + 1) * 0.5 * 65535); return new Uint16Array([_tmpx, _tmpy, _tmpz]); } else { console.error("number of bytes must be 1 or 2"); } }, defaultDecode: function defaultDecode(array, bytes) { if (bytes == 1) { return [array[0] / 255 * 2.0 - 1.0, array[1] / 255 * 2.0 - 1.0, array[2] / 255 * 2.0 - 1.0]; } else if (bytes == 2) { return [array[0] / 65535 * 2.0 - 1.0, array[1] / 65535 * 2.0 - 1.0, array[2] / 65535 * 2.0 - 1.0]; } else { console.error("number of bytes must be 1 or 2"); } }, // for `Angles` encoding anglesEncode: function anglesEncode(x, y, z) { var normal0 = _parseInt(0.5 * (1.0 + Math.atan2(y, x) / Math.PI) * 65535); var normal1 = _parseInt(0.5 * (1.0 + z) * 65535); return new Uint16Array([normal0, normal1]); }, // for `Octahedron` encoding octEncodeBest: function octEncodeBest(x, y, z, bytes) { var oct, dec, best, currentCos, bestCos; // Test various combinations of ceil and floor // to minimize rounding errors best = oct = octEncodeVec3(x, y, z, "floor", "floor"); dec = octDecodeVec2(oct); bestCos = dot(x, y, z, dec); oct = octEncodeVec3(x, y, z, "ceil", "floor"); dec = octDecodeVec2(oct); currentCos = dot(x, y, z, dec); if (currentCos > bestCos) { best = oct; bestCos = currentCos; } oct = octEncodeVec3(x, y, z, "floor", "ceil"); dec = octDecodeVec2(oct); currentCos = dot(x, y, z, dec); if (currentCos > bestCos) { best = oct; bestCos = currentCos; } oct = octEncodeVec3(x, y, z, "ceil", "ceil"); dec = octDecodeVec2(oct); currentCos = dot(x, y, z, dec); if (currentCos > bestCos) { best = oct; } return best; function octEncodeVec3(x0, y0, z0, xfunc, yfunc) { var x = x0 / (Math.abs(x0) + Math.abs(y0) + Math.abs(z0)); var y = y0 / (Math.abs(x0) + Math.abs(y0) + Math.abs(z0)); if (z < 0) { var tempx = (1 - Math.abs(y)) * (x >= 0 ? 1 : -1); var tempy = (1 - Math.abs(x)) * (y >= 0 ? 1 : -1); x = tempx; y = tempy; var diff = 1 - Math.abs(x) - Math.abs(y); if (diff > 0) { diff += 0.001; x += x > 0 ? diff / 2 : -diff / 2; y += y > 0 ? diff / 2 : -diff / 2; } } if (bytes == 1) { return new Int8Array([Math[xfunc](x * 127.5 + (x < 0 ? 1 : 0)), Math[yfunc](y * 127.5 + (y < 0 ? 1 : 0))]); } if (bytes == 2) { return new Int16Array([Math[xfunc](x * 32767.5 + (x < 0 ? 1 : 0)), Math[yfunc](y * 32767.5 + (y < 0 ? 1 : 0))]); } } function octDecodeVec2(oct) { var x = oct[0]; var y = oct[1]; if (bytes == 1) { x /= x < 0 ? 127 : 128; y /= y < 0 ? 127 : 128; } else if (bytes == 2) { x /= x < 0 ? 32767 : 32768; y /= y < 0 ? 32767 : 32768; } var z = 1 - Math.abs(x) - Math.abs(y); if (z < 0) { var tmpx = x; x = (1 - Math.abs(y)) * (x >= 0 ? 1 : -1); y = (1 - Math.abs(tmpx)) * (y >= 0 ? 1 : -1); } var length = Math.sqrt(x * x + y * y + z * z); return [x / length, y / length, z / length]; } function dot(x, y, z, vec3) { return x * vec3[0] + y * vec3[1] + z * vec3[2]; } }, quantizedEncode: function quantizedEncode(array, bytes) { var quantized, segments; if (bytes == 1) { quantized = new Uint8Array(array.length); segments = 255; } else if (bytes == 2) { quantized = new Uint16Array(array.length); segments = 65535; } else { console.error("number of bytes error! "); } var decodeMat = new Matrix4(); var min = new Float32Array(3); var max = new Float32Array(3); min[0] = min[1] = min[2] = Number.MAX_VALUE; max[0] = max[1] = max[2] = -Number.MAX_VALUE; for (var i = 0; i < array.length; i += 3) { min[0] = Math.min(min[0], array[i + 0]); min[1] = Math.min(min[1], array[i + 1]); min[2] = Math.min(min[2], array[i + 2]); max[0] = Math.max(max[0], array[i + 0]); max[1] = Math.max(max[1], array[i + 1]); max[2] = Math.max(max[2], array[i + 2]); } decodeMat.scale(new Vector3((max[0] - min[0]) / segments, (max[1] - min[1]) / segments, (max[2] - min[2]) / segments)); decodeMat.elements[12] = min[0]; decodeMat.elements[13] = min[1]; decodeMat.elements[14] = min[2]; decodeMat.transpose(); var multiplier = new Float32Array([max[0] !== min[0] ? segments / (max[0] - min[0]) : 0, max[1] !== min[1] ? segments / (max[1] - min[1]) : 0, max[2] !== min[2] ? segments / (max[2] - min[2]) : 0]); for (var _i2 = 0; _i2 < array.length; _i2 += 3) { quantized[_i2 + 0] = Math.floor((array[_i2 + 0] - min[0]) * multiplier[0]); quantized[_i2 + 1] = Math.floor((array[_i2 + 1] - min[1]) * multiplier[1]); quantized[_i2 + 2] = Math.floor((array[_i2 + 2] - min[2]) * multiplier[2]); } return { quantized: quantized, decodeMat: decodeMat }; }, quantizedEncodeUV: function quantizedEncodeUV(array, bytes) { var quantized, segments; if (bytes == 1) { quantized = new Uint8Array(array.length); segments = 255; } else if (bytes == 2) { quantized = new Uint16Array(array.length); segments = 65535; } else { console.error("number of bytes error! "); } var decodeMat = new Matrix3(); var min = new Float32Array(2); var max = new Float32Array(2); min[0] = min[1] = Number.MAX_VALUE; max[0] = max[1] = -Number.MAX_VALUE; for (var i = 0; i < array.length; i += 2) { min[0] = Math.min(min[0], array[i + 0]); min[1] = Math.min(min[1], array[i + 1]); max[0] = Math.max(max[0], array[i + 0]); max[1] = Math.max(max[1], array[i + 1]); } decodeMat.scale((max[0] - min[0]) / segments, (max[1] - min[1]) / segments); decodeMat.elements[6] = min[0]; decodeMat.elements[7] = min[1]; decodeMat.transpose(); var multiplier = new Float32Array([max[0] !== min[0] ? segments / (max[0] - min[0]) : 0, max[1] !== min[1] ? segments / (max[1] - min[1]) : 0]); for (var _i3 = 0; _i3 < array.length; _i3 += 2) { quantized[_i3 + 0] = Math.floor((array[_i3 + 0] - min[0]) * multiplier[0]); quantized[_i3 + 1] = Math.floor((array[_i3 + 1] - min[1]) * multiplier[1]); } return { quantized: quantized, decodeMat: decodeMat }; } } }; /** * `PackedPhongMaterial` inherited from THREE.MeshPhongMaterial * * @param {Object} parameters */ function PackedPhongMaterial(parameters) { MeshPhongMaterial.call(this); this.defines = {}; this.type = 'PackedPhongMaterial'; this.uniforms = UniformsUtils.merge([ShaderLib.phong.uniforms, { quantizeMatPos: { value: null }, quantizeMatUV: { value: null } }]); this.vertexShader = ["#define PHONG", "varying vec3 vViewPosition;", "#ifndef FLAT_SHADED", "varying vec3 vNormal;", "#endif", ShaderChunk.common, ShaderChunk.uv_pars_vertex, ShaderChunk.uv2_pars_vertex, ShaderChunk.displacementmap_pars_vertex, ShaderChunk.envmap_pars_vertex, ShaderChunk.color_pars_vertex, ShaderChunk.fog_pars_vertex, ShaderChunk.morphtarget_pars_vertex, ShaderChunk.skinning_pars_vertex, ShaderChunk.shadowmap_pars_vertex, ShaderChunk.logdepthbuf_pars_vertex, ShaderChunk.clipping_planes_pars_vertex, "#ifdef USE_PACKED_NORMAL\n\t\t\t#if USE_PACKED_NORMAL == 0\n\t\t\t\tvec3 decodeNormal(vec3 packedNormal)\n\t\t\t\t{\n\t\t\t\t\tfloat x = packedNormal.x * 2.0 - 1.0;\n\t\t\t\t\tfloat y = packedNormal.y * 2.0 - 1.0;\n\t\t\t\t\tvec2 scth = vec2(sin(x * PI), cos(x * PI));\n\t\t\t\t\tvec2 scphi = vec2(sqrt(1.0 - y * y), y);\n\t\t\t\t\treturn normalize( vec3(scth.y * scphi.x, scth.x * scphi.x, scphi.y) );\n\t\t\t\t}\n\t\t\t#endif\n\n\t\t\t#if USE_PACKED_NORMAL == 1\n\t\t\t\tvec3 decodeNormal(vec3 packedNormal)\n\t\t\t\t{\n\t\t\t\t\tvec3 v = vec3(packedNormal.xy, 1.0 - abs(packedNormal.x) - abs(packedNormal.y));\n\t\t\t\t\tif (v.z < 0.0)\n\t\t\t\t\t{\n\t\t\t\t\t\tv.xy = (1.0 - abs(v.yx)) * vec2((v.x >= 0.0) ? +1.0 : -1.0, (v.y >= 0.0) ? +1.0 : -1.0);\n\t\t\t\t\t}\n\t\t\t\t\treturn normalize(v);\n\t\t\t\t}\n\t\t\t#endif\n\n\t\t\t#if USE_PACKED_NORMAL == 2\n\t\t\t\tvec3 decodeNormal(vec3 packedNormal)\n\t\t\t\t{\n\t\t\t\t\tvec3 v = (packedNormal * 2.0) - 1.0;\n\t\t\t\t\treturn normalize(v);\n\t\t\t\t}\n\t\t\t#endif\n\t\t#endif", "#ifdef USE_PACKED_POSITION\n\t\t\t#if USE_PACKED_POSITION == 0\n\t\t\t\tuniform mat4 quantizeMatPos;\n\t\t\t#endif\n\t\t#endif", "#ifdef USE_PACKED_UV\n\t\t\t#if USE_PACKED_UV == 1\n\t\t\t\tuniform mat3 quantizeMatUV;\n\t\t\t#endif\n\t\t#endif", "#ifdef USE_PACKED_UV\n\t\t\t#if USE_PACKED_UV == 0\n\t\t\t\tvec2 decodeUV(vec2 packedUV)\n\t\t\t\t{\n\t\t\t\t\tvec2 uv = (packedUV * 2.0) - 1.0;\n\t\t\t\t\treturn uv;\n\t\t\t\t}\n\t\t\t#endif\n\n\t\t\t#if USE_PACKED_UV == 1\n\t\t\t\tvec2 decodeUV(vec2 packedUV)\n\t\t\t\t{\n\t\t\t\t\tvec2 uv = ( vec3(packedUV, 1.0) * quantizeMatUV ).xy;\n\t\t\t\t\treturn uv;\n\t\t\t\t}\n\t\t\t#endif\n\t\t#endif", "void main() {", ShaderChunk.uv_vertex, "#ifdef USE_UV\n\t\t\t#ifdef USE_PACKED_UV\n\t\t\t\tvUv = decodeUV(vUv);\n\t\t\t#endif\n\t\t#endif", ShaderChunk.uv2_vertex, ShaderChunk.color_vertex, ShaderChunk.beginnormal_vertex, "#ifdef USE_PACKED_NORMAL\n\t\t\tobjectNormal = decodeNormal(objectNormal);\n\t\t#endif\n\n\t\t#ifdef USE_TANGENT\n\t\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t\t#endif\n\t\t", ShaderChunk.morphnormal_vertex, ShaderChunk.skinbase_vertex, ShaderChunk.skinnormal_vertex, ShaderChunk.defaultnormal_vertex, "#ifndef FLAT_SHADED", " vNormal = normalize( transformedNormal );", "#endif", ShaderChunk.begin_vertex, "#ifdef USE_PACKED_POSITION\n\t\t\t#if USE_PACKED_POSITION == 0\n\t\t\t\ttransformed = ( vec4(transformed, 1.0) * quantizeMatPos ).xyz;\n\t\t\t#endif\n\t\t#endif", ShaderChunk.morphtarget_vertex, ShaderChunk.skinning_vertex, ShaderChunk.displacementmap_vertex, ShaderChunk.project_vertex, ShaderChunk.logdepthbuf_vertex, ShaderChunk.clipping_planes_vertex, "vViewPosition = - mvPosition.xyz;", ShaderChunk.worldpos_vertex, ShaderChunk.envmap_vertex, ShaderChunk.shadowmap_vertex, ShaderChunk.fog_vertex, "}"].join("\n"); // Use the original MeshPhongMaterial's fragmentShader. this.fragmentShader = ["#define PHONG", "uniform vec3 diffuse;", "uniform vec3 emissive;", "uniform vec3 specular;", "uniform float shininess;", "uniform float opacity;", ShaderChunk.common, ShaderChunk.packing, ShaderChunk.dithering_pars_fragment, ShaderChunk.color_pars_fragment, ShaderChunk.uv_pars_fragment, ShaderChunk.uv2_pars_fragment, ShaderChunk.map_pars_fragment, ShaderChunk.alphamap_pars_fragment, ShaderChunk.aomap_pars_fragment, ShaderChunk.lightmap_pars_fragment, ShaderChunk.emissivemap_pars_fragment, ShaderChunk.envmap_common_pars_fragment, ShaderChunk.envmap_pars_fragment, ShaderChunk.cube_uv_reflection_fragment, ShaderChunk.fog_pars_fragment, ShaderChunk.bsdfs, ShaderChunk.lights_pars_begin, ShaderChunk.lights_phong_pars_fragment, ShaderChunk.shadowmap_pars_fragment, ShaderChunk.bumpmap_pars_fragment, ShaderChunk.normalmap_pars_fragment, ShaderChunk.specularmap_pars_fragment, ShaderChunk.logdepthbuf_pars_fragment, ShaderChunk.clipping_planes_pars_fragment, "void main() {", ShaderChunk.clipping_planes_fragment, "vec4 diffuseColor = vec4( diffuse, opacity );", "ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );", "vec3 totalEmissiveRadiance = emissive;", ShaderChunk.logdepthbuf_fragment, ShaderChunk.map_fragment, ShaderChunk.color_fragment, ShaderChunk.alphamap_fragment, ShaderChunk.alphatest_fragment, ShaderChunk.specularmap_fragment, ShaderChunk.normal_fragment_begin, ShaderChunk.normal_fragment_maps, ShaderChunk.emissivemap_fragment, // accumulation ShaderChunk.lights_phong_fragment, ShaderChunk.lights_fragment_begin, ShaderChunk.lights_fragment_maps, ShaderChunk.lights_fragment_end, // modulation ShaderChunk.aomap_fragment, "vec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;", ShaderChunk.envmap_fragment, "gl_FragColor = vec4( outgoingLight, diffuseColor.a );", ShaderChunk.tonemapping_fragment, ShaderChunk.encodings_fragment, ShaderChunk.fog_fragment, ShaderChunk.premultiplied_alpha_fragment, ShaderChunk.dithering_fragment, "}"].join("\n"); this.setValues(parameters); } PackedPhongMaterial.prototype = _Object$create(MeshPhongMaterial.prototype); export { GeometryCompressionUtils, PackedPhongMaterial };