UNPKG

bytev-charts-beta

Version:

基于echarts和JavaScript及ES6封装的一个可以直接调用的图表组件库,内置主题设计,简单快捷,且支持用户自定义配置; npm 安装方式: npm install bytev-charts 若启动提示还需额外install插件,则运行 npm install @babel/runtime-corejs2 即可;

188 lines (167 loc) 8.86 kB
import "core-js/modules/es.array.join.js"; import _Object$create from "@babel/runtime-corejs2/core-js/object/create"; console.warn("THREE.Water2: As part of the transition to ES6 Modules, the files in 'examples/js' were deprecated in May 2020 (r117) and will be deleted in December 2020 (r124). You can find more information about developing using ES6 Modules in https://threejs.org/docs/#manual/en/introduction/Installation."); /** * References: * http://www.valvesoftware.com/publications/2010/siggraph2010_vlachos_waterflow.pdf * http://graphicsrunner.blogspot.de/2010/08/water-using-flow-maps.html * */ THREE.Water = function (geometry, options) { THREE.Mesh.call(this, geometry); this.type = 'Water'; var scope = this; options = options || {}; var color = options.color !== undefined ? new THREE.Color(options.color) : new THREE.Color(0xFFFFFF); var textureWidth = options.textureWidth || 512; var textureHeight = options.textureHeight || 512; var clipBias = options.clipBias || 0; var flowDirection = options.flowDirection || new THREE.Vector2(1, 0); var flowSpeed = options.flowSpeed || 0.03; var reflectivity = options.reflectivity || 0.02; var scale = options.scale || 1; var shader = options.shader || THREE.Water.WaterShader; var encoding = options.encoding !== undefined ? options.encoding : THREE.LinearEncoding; var textureLoader = new THREE.TextureLoader(); var flowMap = options.flowMap || undefined; var normalMap0 = options.normalMap0 || textureLoader.load('textures/water/Water_1_M_Normal.jpg'); var normalMap1 = options.normalMap1 || textureLoader.load('textures/water/Water_2_M_Normal.jpg'); var cycle = 0.15; // a cycle of a flow map phase var halfCycle = cycle * 0.5; var textureMatrix = new THREE.Matrix4(); var clock = new THREE.Clock(); // internal components if (THREE.Reflector === undefined) { console.error('THREE.Water: Required component THREE.Reflector not found.'); return; } if (THREE.Refractor === undefined) { console.error('THREE.Water: Required component THREE.Refractor not found.'); return; } var reflector = new THREE.Reflector(geometry, { textureWidth: textureWidth, textureHeight: textureHeight, clipBias: clipBias, encoding: encoding }); var refractor = new THREE.Refractor(geometry, { textureWidth: textureWidth, textureHeight: textureHeight, clipBias: clipBias, encoding: encoding }); reflector.matrixAutoUpdate = false; refractor.matrixAutoUpdate = false; // material this.material = new THREE.ShaderMaterial({ uniforms: THREE.UniformsUtils.merge([THREE.UniformsLib['fog'], shader.uniforms]), vertexShader: shader.vertexShader, fragmentShader: shader.fragmentShader, transparent: true, fog: true }); if (flowMap !== undefined) { this.material.defines.USE_FLOWMAP = ''; this.material.uniforms["tFlowMap"] = { type: 't', value: flowMap }; } else { this.material.uniforms["flowDirection"] = { type: 'v2', value: flowDirection }; } // maps normalMap0.wrapS = normalMap0.wrapT = THREE.RepeatWrapping; normalMap1.wrapS = normalMap1.wrapT = THREE.RepeatWrapping; this.material.uniforms["tReflectionMap"].value = reflector.getRenderTarget().texture; this.material.uniforms["tRefractionMap"].value = refractor.getRenderTarget().texture; this.material.uniforms["tNormalMap0"].value = normalMap0; this.material.uniforms["tNormalMap1"].value = normalMap1; // water this.material.uniforms["color"].value = color; this.material.uniforms["reflectivity"].value = reflectivity; this.material.uniforms["textureMatrix"].value = textureMatrix; // inital values this.material.uniforms["config"].value.x = 0; // flowMapOffset0 this.material.uniforms["config"].value.y = halfCycle; // flowMapOffset1 this.material.uniforms["config"].value.z = halfCycle; // halfCycle this.material.uniforms["config"].value.w = scale; // scale // functions function updateTextureMatrix(camera) { textureMatrix.set(0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0); textureMatrix.multiply(camera.projectionMatrix); textureMatrix.multiply(camera.matrixWorldInverse); textureMatrix.multiply(scope.matrixWorld); } function updateFlow() { var delta = clock.getDelta(); var config = scope.material.uniforms["config"]; config.value.x += flowSpeed * delta; // flowMapOffset0 config.value.y = config.value.x + halfCycle; // flowMapOffset1 // Important: The distance between offsets should be always the value of "halfCycle". // Moreover, both offsets should be in the range of [ 0, cycle ]. // This approach ensures a smooth water flow and avoids "reset" effects. if (config.value.x >= cycle) { config.value.x = 0; config.value.y = halfCycle; } else if (config.value.y >= cycle) { config.value.y = config.value.y - cycle; } } // this.onBeforeRender = function (renderer, scene, camera) { updateTextureMatrix(camera); updateFlow(); scope.visible = false; reflector.matrixWorld.copy(scope.matrixWorld); refractor.matrixWorld.copy(scope.matrixWorld); reflector.onBeforeRender(renderer, scene, camera); refractor.onBeforeRender(renderer, scene, camera); scope.visible = true; }; }; THREE.Water.prototype = _Object$create(THREE.Mesh.prototype); THREE.Water.prototype.constructor = THREE.Water; THREE.Water.WaterShader = { uniforms: { 'color': { type: 'c', value: null }, 'reflectivity': { type: 'f', value: 0 }, 'tReflectionMap': { type: 't', value: null }, 'tRefractionMap': { type: 't', value: null }, 'tNormalMap0': { type: 't', value: null }, 'tNormalMap1': { type: 't', value: null }, 'textureMatrix': { type: 'm4', value: null }, 'config': { type: 'v4', value: new THREE.Vector4() } }, vertexShader: ['#include <common>', '#include <fog_pars_vertex>', '#include <logdepthbuf_pars_vertex>', 'uniform mat4 textureMatrix;', 'varying vec4 vCoord;', 'varying vec2 vUv;', 'varying vec3 vToEye;', 'void main() {', ' vUv = uv;', ' vCoord = textureMatrix * vec4( position, 1.0 );', ' vec4 worldPosition = modelMatrix * vec4( position, 1.0 );', ' vToEye = cameraPosition - worldPosition.xyz;', ' vec4 mvPosition = viewMatrix * worldPosition;', // used in fog_vertex ' gl_Position = projectionMatrix * mvPosition;', ' #include <logdepthbuf_vertex>', ' #include <fog_vertex>', '}'].join('\n'), fragmentShader: ['#include <common>', '#include <fog_pars_fragment>', '#include <logdepthbuf_pars_fragment>', 'uniform sampler2D tReflectionMap;', 'uniform sampler2D tRefractionMap;', 'uniform sampler2D tNormalMap0;', 'uniform sampler2D tNormalMap1;', '#ifdef USE_FLOWMAP', ' uniform sampler2D tFlowMap;', '#else', ' uniform vec2 flowDirection;', '#endif', 'uniform vec3 color;', 'uniform float reflectivity;', 'uniform vec4 config;', 'varying vec4 vCoord;', 'varying vec2 vUv;', 'varying vec3 vToEye;', 'void main() {', ' #include <logdepthbuf_fragment>', ' float flowMapOffset0 = config.x;', ' float flowMapOffset1 = config.y;', ' float halfCycle = config.z;', ' float scale = config.w;', ' vec3 toEye = normalize( vToEye );', // determine flow direction ' vec2 flow;', ' #ifdef USE_FLOWMAP', ' flow = texture2D( tFlowMap, vUv ).rg * 2.0 - 1.0;', ' #else', ' flow = flowDirection;', ' #endif', ' flow.x *= - 1.0;', // sample normal maps (distort uvs with flowdata) ' vec4 normalColor0 = texture2D( tNormalMap0, ( vUv * scale ) + flow * flowMapOffset0 );', ' vec4 normalColor1 = texture2D( tNormalMap1, ( vUv * scale ) + flow * flowMapOffset1 );', // linear interpolate to get the final normal color ' float flowLerp = abs( halfCycle - flowMapOffset0 ) / halfCycle;', ' vec4 normalColor = mix( normalColor0, normalColor1, flowLerp );', // calculate normal vector ' vec3 normal = normalize( vec3( normalColor.r * 2.0 - 1.0, normalColor.b, normalColor.g * 2.0 - 1.0 ) );', // calculate the fresnel term to blend reflection and refraction maps ' float theta = max( dot( toEye, normal ), 0.0 );', ' float reflectance = reflectivity + ( 1.0 - reflectivity ) * pow( ( 1.0 - theta ), 5.0 );', // calculate final uv coords ' vec3 coord = vCoord.xyz / vCoord.w;', ' vec2 uv = coord.xy + coord.z * normal.xz * 0.05;', ' vec4 reflectColor = texture2D( tReflectionMap, vec2( 1.0 - uv.x, uv.y ) );', ' vec4 refractColor = texture2D( tRefractionMap, uv );', // multiply water color with the mix of both textures ' gl_FragColor = vec4( color, 1.0 ) * mix( refractColor, reflectColor, reflectance );', ' #include <tonemapping_fragment>', ' #include <encodings_fragment>', ' #include <fog_fragment>', '}'].join('\n') };