bytev-charts-beta
Version:
基于echarts和JavaScript及ES6封装的一个可以直接调用的图表组件库,内置主题设计,简单快捷,且支持用户自定义配置; npm 安装方式: npm install bytev-charts 若启动提示还需额外install插件,则运行 npm install @babel/runtime-corejs2 即可;
187 lines (154 loc) • 8.45 kB
JavaScript
import _Object$create from "@babel/runtime-corejs2/core-js/object/create";
import "core-js/modules/es.math.sign.js";
import "core-js/modules/es.array.join.js";
console.warn("THREE.Refractor: As part of the transition to ES6 Modules, the files in 'examples/js' were deprecated in May 2020 (r117) and will be deleted in December 2020 (r124). You can find more information about developing using ES6 Modules in https://threejs.org/docs/#manual/en/introduction/Installation.");
THREE.Refractor = function (geometry, options) {
THREE.Mesh.call(this, geometry);
this.type = 'Refractor';
var scope = this;
options = options || {};
var color = options.color !== undefined ? new THREE.Color(options.color) : new THREE.Color(0x7F7F7F);
var textureWidth = options.textureWidth || 512;
var textureHeight = options.textureHeight || 512;
var clipBias = options.clipBias || 0;
var shader = options.shader || THREE.Refractor.RefractorShader; //
var virtualCamera = new THREE.PerspectiveCamera();
virtualCamera.matrixAutoUpdate = false;
virtualCamera.userData.refractor = true; //
var refractorPlane = new THREE.Plane();
var textureMatrix = new THREE.Matrix4(); // render target
var parameters = {
minFilter: THREE.LinearFilter,
magFilter: THREE.LinearFilter,
format: THREE.RGBFormat,
stencilBuffer: false
};
var renderTarget = new THREE.WebGLRenderTarget(textureWidth, textureHeight, parameters);
if (!THREE.MathUtils.isPowerOfTwo(textureWidth) || !THREE.MathUtils.isPowerOfTwo(textureHeight)) {
renderTarget.texture.generateMipmaps = false;
} // material
this.material = new THREE.ShaderMaterial({
uniforms: THREE.UniformsUtils.clone(shader.uniforms),
vertexShader: shader.vertexShader,
fragmentShader: shader.fragmentShader,
transparent: true // ensures, refractors are drawn from farthest to closest
});
this.material.uniforms["color"].value = color;
this.material.uniforms["tDiffuse"].value = renderTarget.texture;
this.material.uniforms["textureMatrix"].value = textureMatrix; // functions
var visible = function () {
var refractorWorldPosition = new THREE.Vector3();
var cameraWorldPosition = new THREE.Vector3();
var rotationMatrix = new THREE.Matrix4();
var view = new THREE.Vector3();
var normal = new THREE.Vector3();
return function visible(camera) {
refractorWorldPosition.setFromMatrixPosition(scope.matrixWorld);
cameraWorldPosition.setFromMatrixPosition(camera.matrixWorld);
view.subVectors(refractorWorldPosition, cameraWorldPosition);
rotationMatrix.extractRotation(scope.matrixWorld);
normal.set(0, 0, 1);
normal.applyMatrix4(rotationMatrix);
return view.dot(normal) < 0;
};
}();
var updateRefractorPlane = function () {
var normal = new THREE.Vector3();
var position = new THREE.Vector3();
var quaternion = new THREE.Quaternion();
var scale = new THREE.Vector3();
return function updateRefractorPlane() {
scope.matrixWorld.decompose(position, quaternion, scale);
normal.set(0, 0, 1).applyQuaternion(quaternion).normalize(); // flip the normal because we want to cull everything above the plane
normal.negate();
refractorPlane.setFromNormalAndCoplanarPoint(normal, position);
};
}();
var updateVirtualCamera = function () {
var clipPlane = new THREE.Plane();
var clipVector = new THREE.Vector4();
var q = new THREE.Vector4();
return function updateVirtualCamera(camera) {
virtualCamera.matrixWorld.copy(camera.matrixWorld);
virtualCamera.matrixWorldInverse.getInverse(virtualCamera.matrixWorld);
virtualCamera.projectionMatrix.copy(camera.projectionMatrix);
virtualCamera.far = camera.far; // used in WebGLBackground
// The following code creates an oblique view frustum for clipping.
// see: Lengyel, Eric. “Oblique View Frustum Depth Projection and Clipping”.
// Journal of Game Development, Vol. 1, No. 2 (2005), Charles River Media, pp. 5–16
clipPlane.copy(refractorPlane);
clipPlane.applyMatrix4(virtualCamera.matrixWorldInverse);
clipVector.set(clipPlane.normal.x, clipPlane.normal.y, clipPlane.normal.z, clipPlane.constant); // calculate the clip-space corner point opposite the clipping plane and
// transform it into camera space by multiplying it by the inverse of the projection matrix
var projectionMatrix = virtualCamera.projectionMatrix;
q.x = (Math.sign(clipVector.x) + projectionMatrix.elements[8]) / projectionMatrix.elements[0];
q.y = (Math.sign(clipVector.y) + projectionMatrix.elements[9]) / projectionMatrix.elements[5];
q.z = -1.0;
q.w = (1.0 + projectionMatrix.elements[10]) / projectionMatrix.elements[14]; // calculate the scaled plane vector
clipVector.multiplyScalar(2.0 / clipVector.dot(q)); // replacing the third row of the projection matrix
projectionMatrix.elements[2] = clipVector.x;
projectionMatrix.elements[6] = clipVector.y;
projectionMatrix.elements[10] = clipVector.z + 1.0 - clipBias;
projectionMatrix.elements[14] = clipVector.w;
};
}(); // This will update the texture matrix that is used for projective texture mapping in the shader.
// see: http://developer.download.nvidia.com/assets/gamedev/docs/projective_texture_mapping.pdf
function updateTextureMatrix(camera) {
// this matrix does range mapping to [ 0, 1 ]
textureMatrix.set(0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0); // we use "Object Linear Texgen", so we need to multiply the texture matrix T
// (matrix above) with the projection and view matrix of the virtual camera
// and the model matrix of the refractor
textureMatrix.multiply(camera.projectionMatrix);
textureMatrix.multiply(camera.matrixWorldInverse);
textureMatrix.multiply(scope.matrixWorld);
} //
function render(renderer, scene, camera) {
scope.visible = false;
var currentRenderTarget = renderer.getRenderTarget();
var currentXrEnabled = renderer.xr.enabled;
var currentShadowAutoUpdate = renderer.shadowMap.autoUpdate;
renderer.xr.enabled = false; // avoid camera modification
renderer.shadowMap.autoUpdate = false; // avoid re-computing shadows
renderer.setRenderTarget(renderTarget);
if (renderer.autoClear === false) renderer.clear();
renderer.render(scene, virtualCamera);
renderer.xr.enabled = currentXrEnabled;
renderer.shadowMap.autoUpdate = currentShadowAutoUpdate;
renderer.setRenderTarget(currentRenderTarget); // restore viewport
var viewport = camera.viewport;
if (viewport !== undefined) {
renderer.state.viewport(viewport);
}
scope.visible = true;
} //
this.onBeforeRender = function (renderer, scene, camera) {
// Render
renderTarget.texture.encoding = renderer.outputEncoding; // ensure refractors are rendered only once per frame
if (camera.userData.refractor === true) return; // avoid rendering when the refractor is viewed from behind
if (!visible(camera) === true) return; // update
updateRefractorPlane();
updateTextureMatrix(camera);
updateVirtualCamera(camera);
render(renderer, scene, camera);
};
this.getRenderTarget = function () {
return renderTarget;
};
};
THREE.Refractor.prototype = _Object$create(THREE.Mesh.prototype);
THREE.Refractor.prototype.constructor = THREE.Refractor;
THREE.Refractor.RefractorShader = {
uniforms: {
'color': {
value: null
},
'tDiffuse': {
value: null
},
'textureMatrix': {
value: null
}
},
vertexShader: ['uniform mat4 textureMatrix;', 'varying vec4 vUv;', 'void main() {', ' vUv = textureMatrix * vec4( position, 1.0 );', ' gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );', '}'].join('\n'),
fragmentShader: ['uniform vec3 color;', 'uniform sampler2D tDiffuse;', 'varying vec4 vUv;', 'float blendOverlay( float base, float blend ) {', ' return( base < 0.5 ? ( 2.0 * base * blend ) : ( 1.0 - 2.0 * ( 1.0 - base ) * ( 1.0 - blend ) ) );', '}', 'vec3 blendOverlay( vec3 base, vec3 blend ) {', ' return vec3( blendOverlay( base.r, blend.r ), blendOverlay( base.g, blend.g ), blendOverlay( base.b, blend.b ) );', '}', 'void main() {', ' vec4 base = texture2DProj( tDiffuse, vUv );', ' gl_FragColor = vec4( blendOverlay( base.rgb, color ), 1.0 );', '}'].join('\n')
};