bytev-charts-beta
Version:
基于echarts和JavaScript及ES6封装的一个可以直接调用的图表组件库,内置主题设计,简单快捷,且支持用户自定义配置; npm 安装方式: npm install bytev-charts 若启动提示还需额外install插件,则运行 npm install @babel/runtime-corejs2 即可;
238 lines (201 loc) • 9.21 kB
JavaScript
import _Object$create from "@babel/runtime-corejs2/core-js/object/create";
console.warn("THREE.DecalGeometry: As part of the transition to ES6 Modules, the files in 'examples/js' were deprecated in May 2020 (r117) and will be deleted in December 2020 (r124). You can find more information about developing using ES6 Modules in https://threejs.org/docs/#manual/en/introduction/Installation.");
/**
* You can use this geometry to create a decal mesh, that serves different kinds of purposes.
* e.g. adding unique details to models, performing dynamic visual environmental changes or covering seams.
*
* Constructor parameter:
*
* mesh — Any mesh object
* position — Position of the decal projector
* orientation — Orientation of the decal projector
* size — Size of the decal projector
*
* reference: http://blog.wolfire.com/2009/06/how-to-project-decals/
*
*/
THREE.DecalGeometry = function (mesh, position, orientation, size) {
THREE.BufferGeometry.call(this); // buffers
var vertices = [];
var normals = [];
var uvs = []; // helpers
var plane = new THREE.Vector3(); // this matrix represents the transformation of the decal projector
var projectorMatrix = new THREE.Matrix4();
projectorMatrix.makeRotationFromEuler(orientation);
projectorMatrix.setPosition(position);
var projectorMatrixInverse = new THREE.Matrix4().getInverse(projectorMatrix); // generate buffers
generate(); // build geometry
this.setAttribute('position', new THREE.Float32BufferAttribute(vertices, 3));
this.setAttribute('normal', new THREE.Float32BufferAttribute(normals, 3));
this.setAttribute('uv', new THREE.Float32BufferAttribute(uvs, 2));
function generate() {
var i;
var geometry = new THREE.BufferGeometry();
var decalVertices = [];
var vertex = new THREE.Vector3();
var normal = new THREE.Vector3(); // handle different geometry types
if (mesh.geometry.isGeometry) {
geometry.fromGeometry(mesh.geometry);
} else {
geometry.copy(mesh.geometry);
}
var positionAttribute = geometry.attributes.position;
var normalAttribute = geometry.attributes.normal; // first, create an array of 'DecalVertex' objects
// three consecutive 'DecalVertex' objects represent a single face
//
// this data structure will be later used to perform the clipping
if (geometry.index !== null) {
// indexed BufferGeometry
var index = geometry.index;
for (i = 0; i < index.count; i++) {
vertex.fromBufferAttribute(positionAttribute, index.getX(i));
normal.fromBufferAttribute(normalAttribute, index.getX(i));
pushDecalVertex(decalVertices, vertex, normal);
}
} else {
// non-indexed BufferGeometry
for (i = 0; i < positionAttribute.count; i++) {
vertex.fromBufferAttribute(positionAttribute, i);
normal.fromBufferAttribute(normalAttribute, i);
pushDecalVertex(decalVertices, vertex, normal);
}
} // second, clip the geometry so that it doesn't extend out from the projector
decalVertices = clipGeometry(decalVertices, plane.set(1, 0, 0));
decalVertices = clipGeometry(decalVertices, plane.set(-1, 0, 0));
decalVertices = clipGeometry(decalVertices, plane.set(0, 1, 0));
decalVertices = clipGeometry(decalVertices, plane.set(0, -1, 0));
decalVertices = clipGeometry(decalVertices, plane.set(0, 0, 1));
decalVertices = clipGeometry(decalVertices, plane.set(0, 0, -1)); // third, generate final vertices, normals and uvs
for (i = 0; i < decalVertices.length; i++) {
var decalVertex = decalVertices[i]; // create texture coordinates (we are still in projector space)
uvs.push(0.5 + decalVertex.position.x / size.x, 0.5 + decalVertex.position.y / size.y); // transform the vertex back to world space
decalVertex.position.applyMatrix4(projectorMatrix); // now create vertex and normal buffer data
vertices.push(decalVertex.position.x, decalVertex.position.y, decalVertex.position.z);
normals.push(decalVertex.normal.x, decalVertex.normal.y, decalVertex.normal.z);
}
}
function pushDecalVertex(decalVertices, vertex, normal) {
// transform the vertex to world space, then to projector space
vertex.applyMatrix4(mesh.matrixWorld);
vertex.applyMatrix4(projectorMatrixInverse);
normal.transformDirection(mesh.matrixWorld);
decalVertices.push(new THREE.DecalVertex(vertex.clone(), normal.clone()));
}
function clipGeometry(inVertices, plane) {
var outVertices = [];
var s = 0.5 * Math.abs(size.dot(plane)); // a single iteration clips one face,
// which consists of three consecutive 'DecalVertex' objects
for (var i = 0; i < inVertices.length; i += 3) {
var v1Out,
v2Out,
v3Out,
total = 0;
var nV1, nV2, nV3, nV4;
var d1 = inVertices[i + 0].position.dot(plane) - s;
var d2 = inVertices[i + 1].position.dot(plane) - s;
var d3 = inVertices[i + 2].position.dot(plane) - s;
v1Out = d1 > 0;
v2Out = d2 > 0;
v3Out = d3 > 0; // calculate, how many vertices of the face lie outside of the clipping plane
total = (v1Out ? 1 : 0) + (v2Out ? 1 : 0) + (v3Out ? 1 : 0);
switch (total) {
case 0:
{
// the entire face lies inside of the plane, no clipping needed
outVertices.push(inVertices[i]);
outVertices.push(inVertices[i + 1]);
outVertices.push(inVertices[i + 2]);
break;
}
case 1:
{
// one vertex lies outside of the plane, perform clipping
if (v1Out) {
nV1 = inVertices[i + 1];
nV2 = inVertices[i + 2];
nV3 = clip(inVertices[i], nV1, plane, s);
nV4 = clip(inVertices[i], nV2, plane, s);
}
if (v2Out) {
nV1 = inVertices[i];
nV2 = inVertices[i + 2];
nV3 = clip(inVertices[i + 1], nV1, plane, s);
nV4 = clip(inVertices[i + 1], nV2, plane, s);
outVertices.push(nV3);
outVertices.push(nV2.clone());
outVertices.push(nV1.clone());
outVertices.push(nV2.clone());
outVertices.push(nV3.clone());
outVertices.push(nV4);
break;
}
if (v3Out) {
nV1 = inVertices[i];
nV2 = inVertices[i + 1];
nV3 = clip(inVertices[i + 2], nV1, plane, s);
nV4 = clip(inVertices[i + 2], nV2, plane, s);
}
outVertices.push(nV1.clone());
outVertices.push(nV2.clone());
outVertices.push(nV3);
outVertices.push(nV4);
outVertices.push(nV3.clone());
outVertices.push(nV2.clone());
break;
}
case 2:
{
// two vertices lies outside of the plane, perform clipping
if (!v1Out) {
nV1 = inVertices[i].clone();
nV2 = clip(nV1, inVertices[i + 1], plane, s);
nV3 = clip(nV1, inVertices[i + 2], plane, s);
outVertices.push(nV1);
outVertices.push(nV2);
outVertices.push(nV3);
}
if (!v2Out) {
nV1 = inVertices[i + 1].clone();
nV2 = clip(nV1, inVertices[i + 2], plane, s);
nV3 = clip(nV1, inVertices[i], plane, s);
outVertices.push(nV1);
outVertices.push(nV2);
outVertices.push(nV3);
}
if (!v3Out) {
nV1 = inVertices[i + 2].clone();
nV2 = clip(nV1, inVertices[i], plane, s);
nV3 = clip(nV1, inVertices[i + 1], plane, s);
outVertices.push(nV1);
outVertices.push(nV2);
outVertices.push(nV3);
}
break;
}
case 3:
{
// the entire face lies outside of the plane, so let's discard the corresponding vertices
break;
}
}
}
return outVertices;
}
function clip(v0, v1, p, s) {
var d0 = v0.position.dot(p) - s;
var d1 = v1.position.dot(p) - s;
var s0 = d0 / (d0 - d1);
var v = new THREE.DecalVertex(new THREE.Vector3(v0.position.x + s0 * (v1.position.x - v0.position.x), v0.position.y + s0 * (v1.position.y - v0.position.y), v0.position.z + s0 * (v1.position.z - v0.position.z)), new THREE.Vector3(v0.normal.x + s0 * (v1.normal.x - v0.normal.x), v0.normal.y + s0 * (v1.normal.y - v0.normal.y), v0.normal.z + s0 * (v1.normal.z - v0.normal.z))); // need to clip more values (texture coordinates)? do it this way:
// intersectpoint.value = a.value + s * ( b.value - a.value );
return v;
}
};
THREE.DecalGeometry.prototype = _Object$create(THREE.BufferGeometry.prototype);
THREE.DecalGeometry.prototype.constructor = THREE.DecalGeometry; // helper
THREE.DecalVertex = function (position, normal) {
this.position = position;
this.normal = normal;
};
THREE.DecalVertex.prototype.clone = function () {
return new this.constructor(this.position.clone(), this.normal.clone());
};