UNPKG

bytev-charts-beta

Version:

基于echarts和JavaScript及ES6封装的一个可以直接调用的图表组件库,内置主题设计,简单快捷,且支持用户自定义配置; npm 安装方式: npm install bytev-charts 若启动提示还需额外install插件,则运行 npm install @babel/runtime-corejs2 即可;

238 lines (201 loc) 9.21 kB
import _Object$create from "@babel/runtime-corejs2/core-js/object/create"; console.warn("THREE.DecalGeometry: As part of the transition to ES6 Modules, the files in 'examples/js' were deprecated in May 2020 (r117) and will be deleted in December 2020 (r124). You can find more information about developing using ES6 Modules in https://threejs.org/docs/#manual/en/introduction/Installation."); /** * You can use this geometry to create a decal mesh, that serves different kinds of purposes. * e.g. adding unique details to models, performing dynamic visual environmental changes or covering seams. * * Constructor parameter: * * mesh — Any mesh object * position — Position of the decal projector * orientation — Orientation of the decal projector * size — Size of the decal projector * * reference: http://blog.wolfire.com/2009/06/how-to-project-decals/ * */ THREE.DecalGeometry = function (mesh, position, orientation, size) { THREE.BufferGeometry.call(this); // buffers var vertices = []; var normals = []; var uvs = []; // helpers var plane = new THREE.Vector3(); // this matrix represents the transformation of the decal projector var projectorMatrix = new THREE.Matrix4(); projectorMatrix.makeRotationFromEuler(orientation); projectorMatrix.setPosition(position); var projectorMatrixInverse = new THREE.Matrix4().getInverse(projectorMatrix); // generate buffers generate(); // build geometry this.setAttribute('position', new THREE.Float32BufferAttribute(vertices, 3)); this.setAttribute('normal', new THREE.Float32BufferAttribute(normals, 3)); this.setAttribute('uv', new THREE.Float32BufferAttribute(uvs, 2)); function generate() { var i; var geometry = new THREE.BufferGeometry(); var decalVertices = []; var vertex = new THREE.Vector3(); var normal = new THREE.Vector3(); // handle different geometry types if (mesh.geometry.isGeometry) { geometry.fromGeometry(mesh.geometry); } else { geometry.copy(mesh.geometry); } var positionAttribute = geometry.attributes.position; var normalAttribute = geometry.attributes.normal; // first, create an array of 'DecalVertex' objects // three consecutive 'DecalVertex' objects represent a single face // // this data structure will be later used to perform the clipping if (geometry.index !== null) { // indexed BufferGeometry var index = geometry.index; for (i = 0; i < index.count; i++) { vertex.fromBufferAttribute(positionAttribute, index.getX(i)); normal.fromBufferAttribute(normalAttribute, index.getX(i)); pushDecalVertex(decalVertices, vertex, normal); } } else { // non-indexed BufferGeometry for (i = 0; i < positionAttribute.count; i++) { vertex.fromBufferAttribute(positionAttribute, i); normal.fromBufferAttribute(normalAttribute, i); pushDecalVertex(decalVertices, vertex, normal); } } // second, clip the geometry so that it doesn't extend out from the projector decalVertices = clipGeometry(decalVertices, plane.set(1, 0, 0)); decalVertices = clipGeometry(decalVertices, plane.set(-1, 0, 0)); decalVertices = clipGeometry(decalVertices, plane.set(0, 1, 0)); decalVertices = clipGeometry(decalVertices, plane.set(0, -1, 0)); decalVertices = clipGeometry(decalVertices, plane.set(0, 0, 1)); decalVertices = clipGeometry(decalVertices, plane.set(0, 0, -1)); // third, generate final vertices, normals and uvs for (i = 0; i < decalVertices.length; i++) { var decalVertex = decalVertices[i]; // create texture coordinates (we are still in projector space) uvs.push(0.5 + decalVertex.position.x / size.x, 0.5 + decalVertex.position.y / size.y); // transform the vertex back to world space decalVertex.position.applyMatrix4(projectorMatrix); // now create vertex and normal buffer data vertices.push(decalVertex.position.x, decalVertex.position.y, decalVertex.position.z); normals.push(decalVertex.normal.x, decalVertex.normal.y, decalVertex.normal.z); } } function pushDecalVertex(decalVertices, vertex, normal) { // transform the vertex to world space, then to projector space vertex.applyMatrix4(mesh.matrixWorld); vertex.applyMatrix4(projectorMatrixInverse); normal.transformDirection(mesh.matrixWorld); decalVertices.push(new THREE.DecalVertex(vertex.clone(), normal.clone())); } function clipGeometry(inVertices, plane) { var outVertices = []; var s = 0.5 * Math.abs(size.dot(plane)); // a single iteration clips one face, // which consists of three consecutive 'DecalVertex' objects for (var i = 0; i < inVertices.length; i += 3) { var v1Out, v2Out, v3Out, total = 0; var nV1, nV2, nV3, nV4; var d1 = inVertices[i + 0].position.dot(plane) - s; var d2 = inVertices[i + 1].position.dot(plane) - s; var d3 = inVertices[i + 2].position.dot(plane) - s; v1Out = d1 > 0; v2Out = d2 > 0; v3Out = d3 > 0; // calculate, how many vertices of the face lie outside of the clipping plane total = (v1Out ? 1 : 0) + (v2Out ? 1 : 0) + (v3Out ? 1 : 0); switch (total) { case 0: { // the entire face lies inside of the plane, no clipping needed outVertices.push(inVertices[i]); outVertices.push(inVertices[i + 1]); outVertices.push(inVertices[i + 2]); break; } case 1: { // one vertex lies outside of the plane, perform clipping if (v1Out) { nV1 = inVertices[i + 1]; nV2 = inVertices[i + 2]; nV3 = clip(inVertices[i], nV1, plane, s); nV4 = clip(inVertices[i], nV2, plane, s); } if (v2Out) { nV1 = inVertices[i]; nV2 = inVertices[i + 2]; nV3 = clip(inVertices[i + 1], nV1, plane, s); nV4 = clip(inVertices[i + 1], nV2, plane, s); outVertices.push(nV3); outVertices.push(nV2.clone()); outVertices.push(nV1.clone()); outVertices.push(nV2.clone()); outVertices.push(nV3.clone()); outVertices.push(nV4); break; } if (v3Out) { nV1 = inVertices[i]; nV2 = inVertices[i + 1]; nV3 = clip(inVertices[i + 2], nV1, plane, s); nV4 = clip(inVertices[i + 2], nV2, plane, s); } outVertices.push(nV1.clone()); outVertices.push(nV2.clone()); outVertices.push(nV3); outVertices.push(nV4); outVertices.push(nV3.clone()); outVertices.push(nV2.clone()); break; } case 2: { // two vertices lies outside of the plane, perform clipping if (!v1Out) { nV1 = inVertices[i].clone(); nV2 = clip(nV1, inVertices[i + 1], plane, s); nV3 = clip(nV1, inVertices[i + 2], plane, s); outVertices.push(nV1); outVertices.push(nV2); outVertices.push(nV3); } if (!v2Out) { nV1 = inVertices[i + 1].clone(); nV2 = clip(nV1, inVertices[i + 2], plane, s); nV3 = clip(nV1, inVertices[i], plane, s); outVertices.push(nV1); outVertices.push(nV2); outVertices.push(nV3); } if (!v3Out) { nV1 = inVertices[i + 2].clone(); nV2 = clip(nV1, inVertices[i], plane, s); nV3 = clip(nV1, inVertices[i + 1], plane, s); outVertices.push(nV1); outVertices.push(nV2); outVertices.push(nV3); } break; } case 3: { // the entire face lies outside of the plane, so let's discard the corresponding vertices break; } } } return outVertices; } function clip(v0, v1, p, s) { var d0 = v0.position.dot(p) - s; var d1 = v1.position.dot(p) - s; var s0 = d0 / (d0 - d1); var v = new THREE.DecalVertex(new THREE.Vector3(v0.position.x + s0 * (v1.position.x - v0.position.x), v0.position.y + s0 * (v1.position.y - v0.position.y), v0.position.z + s0 * (v1.position.z - v0.position.z)), new THREE.Vector3(v0.normal.x + s0 * (v1.normal.x - v0.normal.x), v0.normal.y + s0 * (v1.normal.y - v0.normal.y), v0.normal.z + s0 * (v1.normal.z - v0.normal.z))); // need to clip more values (texture coordinates)? do it this way: // intersectpoint.value = a.value + s * ( b.value - a.value ); return v; } }; THREE.DecalGeometry.prototype = _Object$create(THREE.BufferGeometry.prototype); THREE.DecalGeometry.prototype.constructor = THREE.DecalGeometry; // helper THREE.DecalVertex = function (position, normal) { this.position = position; this.normal = normal; }; THREE.DecalVertex.prototype.clone = function () { return new this.constructor(this.position.clone(), this.normal.clone()); };