UNPKG

bst-typed

Version:
449 lines (448 loc) 17.9 kB
"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.Matrix = void 0; /** * */ class Matrix { /** * The constructor function initializes a matrix object with the provided data and options, or with * default values if no options are provided. * @param {number[][]} data - A 2D array of numbers representing the data for the matrix. * @param [options] - The `options` parameter is an optional object that can contain the following * properties: */ constructor(data, options) { var _a, _b, _c; this._rows = 0; this._cols = 0; if (options) { const { rows, cols, addFn, subtractFn, multiplyFn } = options; if (typeof rows === 'number' && rows > 0) this._rows = rows; else this._rows = data.length; if (typeof cols === 'number' && cols > 0) this._cols = cols; else this._cols = ((_a = data[0]) === null || _a === void 0 ? void 0 : _a.length) || 0; if (addFn) this._addFn = addFn; if (subtractFn) this._subtractFn = subtractFn; if (multiplyFn) this._multiplyFn = multiplyFn; } else { this._rows = data.length; this._cols = (_c = (_b = data[0]) === null || _b === void 0 ? void 0 : _b.length) !== null && _c !== void 0 ? _c : 0; } if (data.length > 0) { this._data = data; } else { this._data = []; for (let i = 0; i < this.rows; i++) { this._data[i] = new Array(this.cols).fill(0); } } } /** * The function returns the number of rows. * @returns The number of rows. */ get rows() { return this._rows; } /** * The function returns the value of the protected variable _cols. * @returns The number of columns. */ get cols() { return this._cols; } /** * The function returns a two-dimensional array of numbers. * @returns The data property, which is a two-dimensional array of numbers. */ get data() { return this._data; } /** * The above function returns the value of the _addFn property. * @returns The value of the property `_addFn` is being returned. */ get addFn() { return this._addFn; } /** * The function returns the value of the _subtractFn property. * @returns The `_subtractFn` property is being returned. */ get subtractFn() { return this._subtractFn; } /** * The function returns the value of the _multiplyFn property. * @returns The `_multiplyFn` property is being returned. */ get multiplyFn() { return this._multiplyFn; } /** * The `get` function returns the value at the specified row and column index if it is a valid index. * @param {number} row - The `row` parameter represents the row index of the element you want to * retrieve from the data array. * @param {number} col - The parameter "col" represents the column number of the element you want to * retrieve from the data array. * @returns The `get` function returns a number if the provided row and column indices are valid. * Otherwise, it returns `undefined`. */ get(row, col) { if (this.isValidIndex(row, col)) { return this.data[row][col]; } } /** * The set function updates the value at a specified row and column in a two-dimensional array. * @param {number} row - The "row" parameter represents the row index of the element in a * two-dimensional array or matrix. It specifies the row where the value will be set. * @param {number} col - The "col" parameter represents the column index of the element in a * two-dimensional array. * @param {number} value - The value parameter represents the number that you want to set at the * specified row and column in the data array. * @returns a boolean value. It returns true if the index (row, col) is valid and the value is * successfully set in the data array. It returns false if the index is invalid and the value is not * set. */ set(row, col, value) { if (this.isValidIndex(row, col)) { this.data[row][col] = value; return true; } return false; } /** * The function checks if the dimensions of the given matrix match the dimensions of the current * matrix. * @param {Matrix} matrix - The parameter `matrix` is of type `Matrix`. * @returns a boolean value. */ isMatchForCalculate(matrix) { return this.rows === matrix.rows && this.cols === matrix.cols; } /** * The `add` function adds two matrices together, returning a new matrix with the result. * @param {Matrix} matrix - The `matrix` parameter is an instance of the `Matrix` class. * @returns The `add` method returns a new `Matrix` object that represents the result of adding the * current matrix with the provided `matrix` parameter. */ add(matrix) { if (!this.isMatchForCalculate(matrix)) { throw new Error('Matrix dimensions must match for addition.'); } const resultData = []; for (let i = 0; i < this.rows; i++) { resultData[i] = []; for (let j = 0; j < this.cols; j++) { const a = this.get(i, j), b = matrix.get(i, j); if (a !== undefined && b !== undefined) { const added = this._addFn(a, b); if (added) { resultData[i][j] = added; } } } } return new Matrix(resultData, { rows: this.rows, cols: this.cols, addFn: this.addFn, subtractFn: this.subtractFn, multiplyFn: this.multiplyFn }); } /** * The `subtract` function performs element-wise subtraction between two matrices and returns a new * matrix with the result. * @param {Matrix} matrix - The `matrix` parameter is an instance of the `Matrix` class. It * represents the matrix that you want to subtract from the current matrix. * @returns a new Matrix object with the result of the subtraction operation. */ subtract(matrix) { if (!this.isMatchForCalculate(matrix)) { throw new Error('Matrix dimensions must match for subtraction.'); } const resultData = []; for (let i = 0; i < this.rows; i++) { resultData[i] = []; for (let j = 0; j < this.cols; j++) { const a = this.get(i, j), b = matrix.get(i, j); if (a !== undefined && b !== undefined) { const subtracted = this._subtractFn(a, b); if (subtracted) { resultData[i][j] = subtracted; } } } } return new Matrix(resultData, { rows: this.rows, cols: this.cols, addFn: this.addFn, subtractFn: this.subtractFn, multiplyFn: this.multiplyFn }); } /** * The `multiply` function performs matrix multiplication between two matrices and returns the result * as a new matrix. * @param {Matrix} matrix - The `matrix` parameter is an instance of the `Matrix` class. * @returns a new Matrix object. */ multiply(matrix) { if (this.cols !== matrix.rows) { throw new Error('Matrix dimensions must be compatible for multiplication (A.cols = B.rows).'); } const resultData = []; for (let i = 0; i < this.rows; i++) { resultData[i] = []; for (let j = 0; j < matrix.cols; j++) { let sum; for (let k = 0; k < this.cols; k++) { const a = this.get(i, k), b = matrix.get(k, j); if (a !== undefined && b !== undefined) { const multiplied = this.multiplyFn(a, b); if (multiplied !== undefined) { sum = this.addFn(sum, multiplied); } } } if (sum !== undefined) resultData[i][j] = sum; } } return new Matrix(resultData, { rows: this.rows, cols: matrix.cols, addFn: this.addFn, subtractFn: this.subtractFn, multiplyFn: this.multiplyFn }); } /** * The transpose function takes a matrix and returns a new matrix that is the transpose of the * original matrix. * @returns The transpose() function returns a new Matrix object with the transposed data. */ transpose() { if (this.data.some(row => row.length !== this.rows)) { throw new Error('Matrix must be rectangular for transposition.'); } const resultData = []; for (let j = 0; j < this.cols; j++) { resultData[j] = []; for (let i = 0; i < this.rows; i++) { const trans = this.get(i, j); if (trans !== undefined) resultData[j][i] = trans; } } return new Matrix(resultData, { rows: this.cols, cols: this.rows, addFn: this.addFn, subtractFn: this.subtractFn, multiplyFn: this.multiplyFn }); } /** * The `inverse` function calculates the inverse of a square matrix using Gaussian elimination. * @returns a Matrix object, which represents the inverse of the original matrix. */ inverse() { var _a; // Check if the matrix is square if (this.rows !== this.cols) { throw new Error('Matrix must be square for inversion.'); } // Create an augmented matrix [this | I] const augmentedMatrixData = []; for (let i = 0; i < this.rows; i++) { augmentedMatrixData[i] = this.data[i].slice(); // Copy the original matrix for (let j = 0; j < this.cols; j++) { augmentedMatrixData[i][this.cols + j] = i === j ? 1 : 0; // Append the identity matrix } } const augmentedMatrix = new Matrix(augmentedMatrixData, { rows: this.rows, cols: this.cols * 2, addFn: this.addFn, subtractFn: this.subtractFn, multiplyFn: this.multiplyFn }); // Apply Gaussian elimination to transform the left half into the identity matrix for (let i = 0; i < this.rows; i++) { // Find pivot let pivotRow = i; while (pivotRow < this.rows && augmentedMatrix.get(pivotRow, i) === 0) { pivotRow++; } if (pivotRow === this.rows) { // Matrix is singular, and its inverse does not exist throw new Error('Matrix is singular, and its inverse does not exist.'); } // Swap rows to make the pivot the current row augmentedMatrix._swapRows(i, pivotRow); // Scale the pivot row to make the pivot element 1 const pivotElement = (_a = augmentedMatrix.get(i, i)) !== null && _a !== void 0 ? _a : 1; if (pivotElement === 0) { // Handle division by zero throw new Error('Matrix is singular, and its inverse does not exist (division by zero).'); } augmentedMatrix._scaleRow(i, 1 / pivotElement); // Eliminate other rows to make elements in the current column zero for (let j = 0; j < this.rows; j++) { if (j !== i) { let factor = augmentedMatrix.get(j, i); if (factor === undefined) factor = 0; augmentedMatrix._addScaledRow(j, i, -factor); } } } // Extract the right half of the augmented matrix as the inverse const inverseData = []; for (let i = 0; i < this.rows; i++) { inverseData[i] = augmentedMatrix.data[i].slice(this.cols); } return new Matrix(inverseData, { rows: this.rows, cols: this.cols, addFn: this.addFn, subtractFn: this.subtractFn, multiplyFn: this.multiplyFn }); } /** * The dot function calculates the dot product of two matrices and returns a new matrix. * @param {Matrix} matrix - The `matrix` parameter is an instance of the `Matrix` class. * @returns a new Matrix object. */ dot(matrix) { if (this.cols !== matrix.rows) { throw new Error('Number of columns in the first matrix must be equal to the number of rows in the second matrix for dot product.'); } const resultData = []; for (let i = 0; i < this.rows; i++) { resultData[i] = []; for (let j = 0; j < matrix.cols; j++) { let sum; for (let k = 0; k < this.cols; k++) { const a = this.get(i, k), b = matrix.get(k, j); if (a !== undefined && b !== undefined) { const multiplied = this.multiplyFn(a, b); if (multiplied !== undefined) { sum = this.addFn(sum, multiplied); } } } if (sum !== undefined) resultData[i][j] = sum; } } return new Matrix(resultData, { rows: this.rows, cols: matrix.cols, addFn: this.addFn, subtractFn: this.subtractFn, multiplyFn: this.multiplyFn }); } /** * The function checks if a given row and column index is valid within a specified range. * @param {number} row - The `row` parameter represents the row index of a two-dimensional array or * matrix. It is a number that indicates the specific row in the matrix. * @param {number} col - The "col" parameter represents the column index in a two-dimensional array * or grid. It is used to check if the given column index is valid within the bounds of the grid. * @returns A boolean value is being returned. */ isValidIndex(row, col) { return row >= 0 && row < this.rows && col >= 0 && col < this.cols; } /** * The `clone` function returns a new instance of the Matrix class with the same data and properties * as the original instance. * @returns The `clone()` method is returning a new instance of the `Matrix` class with the same data * and properties as the current instance. */ clone() { return new Matrix(this.data, { rows: this.rows, cols: this.cols, addFn: this.addFn, subtractFn: this.subtractFn, multiplyFn: this.multiplyFn }); } _addFn(a, b) { if (a === undefined) return b; return a + b; } _subtractFn(a, b) { return a - b; } _multiplyFn(a, b) { return a * b; } /** * The function `_swapRows` swaps the positions of two rows in an array. * @param {number} row1 - The `row1` parameter is the index of the first row that you want to swap. * @param {number} row2 - The `row2` parameter is the index of the second row that you want to swap * with the first row. */ _swapRows(row1, row2) { const temp = this.data[row1]; this.data[row1] = this.data[row2]; this.data[row2] = temp; } /** * The function scales a specific row in a matrix by a given scalar value. * @param {number} row - The `row` parameter represents the index of the row in the matrix that you * want to scale. It is a number that indicates the position of the row within the matrix. * @param {number} scalar - The scalar parameter is a number that is used to multiply each element in * a specific row of a matrix. */ _scaleRow(row, scalar) { for (let j = 0; j < this.cols; j++) { let multiplied = this.multiplyFn(this.data[row][j], scalar); if (multiplied === undefined) multiplied = 0; this.data[row][j] = multiplied; } } /** * The function `_addScaledRow` multiplies a row in a matrix by a scalar value and adds it to another * row. * @param {number} targetRow - The targetRow parameter represents the index of the row in which the * scaled values will be added. * @param {number} sourceRow - The sourceRow parameter represents the index of the row from which the * values will be scaled and added to the targetRow. * @param {number} scalar - The scalar parameter is a number that is used to scale the values in the * source row before adding them to the target row. */ _addScaledRow(targetRow, sourceRow, scalar) { for (let j = 0; j < this.cols; j++) { let multiplied = this.multiplyFn(this.data[sourceRow][j], scalar); if (multiplied === undefined) multiplied = 0; const scaledValue = multiplied; let added = this.addFn(this.data[targetRow][j], scaledValue); if (added === undefined) added = 0; this.data[targetRow][j] = added; } } } exports.Matrix = Matrix;