bst-typed
Version:
Binary Search Tree
561 lines (422 loc) • 18.9 kB
Markdown







This is a standalone BST (Binary Search Tree) data structure from the data-structure-typed collection. If you wish to
access more data structures or advanced features, you can transition to directly installing the
complete [data-structure-typed](https://www.npmjs.com/package/data-structure-typed) package
# How
## install
### npm
```bash
npm i bst-typed --save
```
### yarn
```bash
yarn add bst-typed
```
### snippet
#### TS
```typescript
import {BST, BSTNode} from 'data-structure-typed';
// /* or if you prefer */ import {BST, BSTNode} from 'bst-typed';
const bst = new BST();
bst instanceof BST; // true
bst.add(11);
bst.add(3);
const idsAndValues = [15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5];
bst.addMany(idsAndValues);
bst.root instanceof BSTNode; // true
if (bst.root) bst.root.id; // 11
bst.size; // 16
bst.has(6); // true
const node6 = bst.get(6);
node6 && bst.getHeight(6); // 2
node6 && bst.getDepth(6); // 3
const nodeId10 = bst.get(10);
nodeId10?.id; // 10
const nodeVal9 = bst.get(9, 'val');
nodeVal9?.id; // 9
const leftMost = bst.getLeftMost();
leftMost?.id; // 1
const node15 = bst.get(15);
const minNodeBySpecificNode = node15 && bst.getLeftMost(node15);
minNodeBySpecificNode?.id; // 12
const subTreeSum = node15 && bst.subTreeSum(15);
subTreeSum; // 70
const lesserSum = bst.lesserSum(10);
lesserSum; // 45
node15 instanceof BSTNode; // true
const node11 = bst.get(11);
node11 instanceof BSTNode; // true
const dfsInorderNodes = bst.DFS('in', 'node');
dfsInorderNodes[0].id; // 1
dfsInorderNodes[dfsInorderNodes.length - 1].id; // 16
bst.perfectlyBalance();
bst.isPerfectlyBalanced(); // true
const bfsNodesAfterBalanced = bst.BFS('node');
bfsNodesAfterBalanced[0].id; // 8);
bfsNodesAfterBalanced[bfsNodesAfterBalanced.length - 1].id; // 16
const removed11 = bst.remove(11, true);
removed11 instanceof Array; // true
if (removed11[0].deleted) removed11[0].deleted.id; // 11
bst.isAVLBalanced(); // true
bst.getHeight(15); // 1
const removed1 = bst.remove(1, true);
removed1 instanceof Array; // true
if (removed1[0].deleted) removed1[0].deleted.id; // 1
bst.isAVLBalanced(); // true
bst.getHeight(); // 4
const removed4 = bst.remove(4, true);
removed4 instanceof Array; // true
if (removed4[0].deleted) removed4[0].deleted.id; // 4
bst.isAVLBalanced(); // true
bst.getHeight(); // 4
const removed10 = bst.remove(10, true);
if (removed10[0].deleted) removed10[0].deleted.id; // 10
bst.isAVLBalanced(); // false
bst.getHeight(); // 4
const removed15 = bst.remove(15, true);
if (removed15[0].deleted) removed15[0].deleted.id; // 15
bst.isAVLBalanced(); // true
bst.getHeight(); // 3
const removed5 = bst.remove(5, true);
if (removed5[0].deleted) removed5[0].deleted.id; // 5
bst.isAVLBalanced(); // true
bst.getHeight(); // 3
const removed13 = bst.remove(13, true);
if (removed13[0].deleted) removed13[0].deleted.id; // 13
bst.isAVLBalanced(); // true
bst.getHeight(); // 3
const removed3 = bst.remove(3, true);
if (removed3[0].deleted) removed3[0].deleted.id; // 3
bst.isAVLBalanced(); // false
bst.getHeight(); // 3
const removed8 = bst.remove(8, true);
if (removed8[0].deleted) removed8[0].deleted.id; // 8
bst.isAVLBalanced(); // true
bst.getHeight(); // 3
const removed6 = bst.remove(6, true);
if (removed6[0].deleted) removed6[0].deleted.id; // 6
bst.remove(6, true).length; // 0
bst.isAVLBalanced(); // false
bst.getHeight(); // 3
const removed7 = bst.remove(7, true);
if (removed7[0].deleted) removed7[0].deleted.id; // 7
bst.isAVLBalanced(); // false
bst.getHeight(); // 3
const removed9 = bst.remove(9, true);
if (removed9[0].deleted) removed9[0].deleted.id; // 9
bst.isAVLBalanced(); // false
bst.getHeight(); // 3
const removed14 = bst.remove(14, true);
if (removed14[0].deleted) removed14[0].deleted.id; // 14
bst.isAVLBalanced(); // false
bst.getHeight(); // 2
bst.isAVLBalanced(); // false
const bfsIDs = bst.BFS();
bfsIDs[0]; // 2
bfsIDs[1]; // 12
bfsIDs[2]; // 16
const bfsNodes = bst.BFS('node');
bfsNodes[0].id; // 2
bfsNodes[1].id; // 12
bfsNodes[2].id; // 16
```
```javascript
const {BST, BSTNode} = require('data-structure-typed');
// /* or if you prefer */ const {BST, BSTNode} = require('bst-typed');
const bst = new BST();
bst instanceof BST; // true
bst.add(11);
bst.add(3);
const idsAndValues = [15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5];
bst.addMany(idsAndValues);
bst.root instanceof BSTNode; // true
if (bst.root) bst.root.id; // 11
bst.size; // 16
bst.has(6); // true
const node6 = bst.get(6);
node6 && bst.getHeight(6); // 2
node6 && bst.getDepth(6); // 3
const nodeId10 = bst.get(10);
nodeId10?.id; // 10
const nodeVal9 = bst.get(9, 'val');
nodeVal9?.id; // 9
const leftMost = bst.getLeftMost();
leftMost?.id; // 1
const node15 = bst.get(15);
const minNodeBySpecificNode = node15 && bst.getLeftMost(node15);
minNodeBySpecificNode?.id; // 12
const subTreeSum = node15 && bst.subTreeSum(15);
subTreeSum; // 70
const lesserSum = bst.lesserSum(10);
lesserSum; // 45
node15 instanceof BSTNode; // true
const node11 = bst.get(11);
node11 instanceof BSTNode; // true
const dfsInorderNodes = bst.DFS('in', 'node');
dfsInorderNodes[0].id; // 1
dfsInorderNodes[dfsInorderNodes.length - 1].id; // 16
bst.perfectlyBalance();
bst.isPerfectlyBalanced(); // true
const bfsNodesAfterBalanced = bst.BFS('node');
bfsNodesAfterBalanced[0].id; // 8);
bfsNodesAfterBalanced[bfsNodesAfterBalanced.length - 1].id; // 16
const removed11 = bst.remove(11, true);
removed11 instanceof Array; // true
if (removed11[0].deleted) removed11[0].deleted.id; // 11
bst.isAVLBalanced(); // true
bst.getHeight(15); // 1
const removed1 = bst.remove(1, true);
removed1 instanceof Array; // true
if (removed1[0].deleted) removed1[0].deleted.id; // 1
bst.isAVLBalanced(); // true
bst.getHeight(); // 4
const removed4 = bst.remove(4, true);
removed4 instanceof Array; // true
if (removed4[0].deleted) removed4[0].deleted.id; // 4
bst.isAVLBalanced(); // true
bst.getHeight(); // 4
const removed10 = bst.remove(10, true);
if (removed10[0].deleted) removed10[0].deleted.id; // 10
bst.isAVLBalanced(); // false
bst.getHeight(); // 4
const removed15 = bst.remove(15, true);
if (removed15[0].deleted) removed15[0].deleted.id; // 15
bst.isAVLBalanced(); // true
bst.getHeight(); // 3
const removed5 = bst.remove(5, true);
if (removed5[0].deleted) removed5[0].deleted.id; // 5
bst.isAVLBalanced(); // true
bst.getHeight(); // 3
const removed13 = bst.remove(13, true);
if (removed13[0].deleted) removed13[0].deleted.id; // 13
bst.isAVLBalanced(); // true
bst.getHeight(); // 3
const removed3 = bst.remove(3, true);
if (removed3[0].deleted) removed3[0].deleted.id; // 3
bst.isAVLBalanced(); // false
bst.getHeight(); // 3
const removed8 = bst.remove(8, true);
if (removed8[0].deleted) removed8[0].deleted.id; // 8
bst.isAVLBalanced(); // true
bst.getHeight(); // 3
const removed6 = bst.remove(6, true);
if (removed6[0].deleted) removed6[0].deleted.id; // 6
bst.remove(6, true).length; // 0
bst.isAVLBalanced(); // false
bst.getHeight(); // 3
const removed7 = bst.remove(7, true);
if (removed7[0].deleted) removed7[0].deleted.id; // 7
bst.isAVLBalanced(); // false
bst.getHeight(); // 3
const removed9 = bst.remove(9, true);
if (removed9[0].deleted) removed9[0].deleted.id; // 9
bst.isAVLBalanced(); // false
bst.getHeight(); // 3
const removed14 = bst.remove(14, true);
if (removed14[0].deleted) removed14[0].deleted.id; // 14
bst.isAVLBalanced(); // false
bst.getHeight(); // 2
bst.isAVLBalanced(); // false
const bfsIDs = bst.BFS();
bfsIDs[0]; // 2
bfsIDs[1]; // 12
bfsIDs[2]; // 16
const bfsNodes = bst.BFS('node');
bfsNodes[0].id; // 2
bfsNodes[1].id; // 12
bfsNodes[2].id; // 16
```
[//]: # (No deletion!!! Start of Example Replace Section)
```typescript
const dataset1 = new BST<number, string>([
[ ],
[ ]
]);
const dataset2 = [
[ ],
[ ]
];
const dataset3 = new BST<number, string>([
[ ],
[ ],
[ ]
]);
// Merge datasets into a single BinarySearchTree
const merged = new BST<number, string>(dataset1);
merged.addMany(dataset2);
merged.merge(dataset3);
// Verify merged dataset is in sorted order
console.log([...merged.values()]); // ['A', 'B', 'C', 'D', 'E', 'F', 'G']
```
```typescript
const bst = new BST<number>([10, 5, 15, 3, 7, 12, 18]);
console.log(bst.search(new Range(5, 10))); // [5, 7, 10]
console.log(bst.rangeSearch([4, 12], node => node.key.toString())); // ['5', '7', '10', '12']
console.log(bst.search(new Range(4, 12, true, false))); // [5, 7, 10]
console.log(bst.rangeSearch([15, 20])); // [15, 18]
console.log(bst.search(new Range(15, 20, false))); // [18]
```
```typescript
const bst = new BST<number>([20, 10, 30, 5, 15, 25, 35, 3, 7, 12, 18]);
// LCA helper function
const findLCA = (num1: number, num2: number): number | undefined => {
const path1 = bst.getPathToRoot(num1);
const path2 = bst.getPathToRoot(num2);
// Find the first common ancestor
return findFirstCommon(path1, path2);
};
function findFirstCommon(arr1: number[], arr2: number[]): number | undefined {
for (const num of arr1) {
if (arr2.indexOf(num) !== -1) {
return num;
}
}
return undefined;
}
// Assertions
console.log(findLCA(3, 10)); // 7
console.log(findLCA(5, 35)); // 15
console.log(findLCA(20, 30)); // 25
```
[//]: # (No deletion!!! End of Example Replace Section)
[ ](https://data-structure-typed-docs.vercel.app)
[ ](https://vivid-algorithm.vercel.app)
<a href="https://github.com/zrwusa/vivid-algorithm" target="_blank">Examples Repository</a>
<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Unit Test</th>
<th>Performance Test</th>
<th>API Docs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary Search Tree (BST)</td>
<td><img src="https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/assets/tick.svg" alt=""></td>
<td><img src="https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/assets/tick.svg" alt=""></td>
<td><a href="https://data-structure-typed-docs.vercel.app/classes/BST.html"><span>BST</span></a></td>
</tr>
</tbody>
</table>
<table>
<thead>
<tr>
<th>Data Structure Typed</th>
<th>C++ STL</th>
<th>java.util</th>
<th>Python collections</th>
</tr>
</thead>
<tbody>
<tr>
<td>BST<K, V></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
[//]: # (No deletion!!! Start of Replace Section)
<div class="json-to-html-collapse clearfix 0">
<div class='collapsible level0' ><span class='json-to-html-label'>bst</span></div>
<div class="content"><table style="display: table; width:100%; table-layout: fixed;"><tr><th>test name</th><th>time taken (ms)</th><th>executions per sec</th><th>sample deviation</th></tr><tr><td>10,000 add randomly</td><td>31.59</td><td>31.66</td><td>2.74e-4</td></tr><tr><td>10,000 add & delete randomly</td><td>74.56</td><td>13.41</td><td>8.32e-4</td></tr><tr><td>10,000 addMany</td><td>29.16</td><td>34.30</td><td>0.00</td></tr><tr><td>10,000 get</td><td>29.24</td><td>34.21</td><td>0.00</td></tr></table></div>
</div>
[//]: # (No deletion!!! End of Replace Section)
## Built-in classic algorithms
<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Function Description</th>
<th>Iteration Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary Tree DFS</td>
<td>Traverse a binary tree in a depth-first manner, starting from the root node, first visiting the left subtree,
and then the right subtree, using recursion.
</td>
<td>Recursion + Iteration</td>
</tr>
<tr>
<td>Binary Tree BFS</td>
<td>Traverse a binary tree in a breadth-first manner, starting from the root node, visiting nodes level by level
from left to right.
</td>
<td>Iteration</td>
</tr>
<tr>
<td>Binary Tree Morris</td>
<td>Morris traversal is an in-order traversal algorithm for binary trees with O(1) space complexity. It allows tree
traversal without additional stack or recursion.
</td>
<td>Iteration</td>
</tr>
</tbody>
</table>
## Software Engineering Design Standards
<table>
<tr>
<th>Principle</th>
<th>Description</th>
</tr>
<tr>
<td>Practicality</td>
<td>Follows ES6 and ESNext standards, offering unified and considerate optional parameters, and simplifies method names.</td>
</tr>
<tr>
<td>Extensibility</td>
<td>Adheres to OOP (Object-Oriented Programming) principles, allowing inheritance for all data structures.</td>
</tr>
<tr>
<td>Modularization</td>
<td>Includes data structure modularization and independent NPM packages.</td>
</tr>
<tr>
<td>Efficiency</td>
<td>All methods provide time and space complexity, comparable to native JS performance.</td>
</tr>
<tr>
<td>Maintainability</td>
<td>Follows open-source community development standards, complete documentation, continuous integration, and adheres to TDD (Test-Driven Development) patterns.</td>
</tr>
<tr>
<td>Testability</td>
<td>Automated and customized unit testing, performance testing, and integration testing.</td>
</tr>
<tr>
<td>Portability</td>
<td>Plans for porting to Java, Python, and C++, currently achieved to 80%.</td>
</tr>
<tr>
<td>Reusability</td>
<td>Fully decoupled, minimized side effects, and adheres to OOP.</td>
</tr>
<tr>
<td>Security</td>
<td>Carefully designed security for member variables and methods. Read-write separation. Data structure software does not need to consider other security aspects.</td>
</tr>
<tr>
<td>Scalability</td>
<td>Data structure software does not involve load issues.</td>
</tr>
</table>