box-node-sdk
Version:
Official SDK for Box Platform APIs
167 lines (166 loc) • 6.01 kB
text/typescript
import { BoxSdkError } from '../box/errors';
import { SerializedData } from '../serialization/json';
import { sdIsEmpty } from '../serialization/json';
import { sdIsBoolean } from '../serialization/json';
import { sdIsNumber } from '../serialization/json';
import { sdIsString } from '../serialization/json';
import { sdIsList } from '../serialization/json';
import { sdIsMap } from '../serialization/json';
export type AiLlmEndpointParamsAwsTypeField = 'aws_params';
export class AiLlmEndpointParamsAws {
/**
* The type of the AI LLM endpoint params object for AWS.
* This parameter is **required**. */
readonly type: AiLlmEndpointParamsAwsTypeField =
'aws_params' as AiLlmEndpointParamsAwsTypeField;
/**
* What sampling temperature to use, between 0 and 1. Higher values like 0.8 will make the output more random,
* while lower values like 0.2 will make it more focused and deterministic.
* We generally recommend altering this or `top_p` but not both. */
readonly temperature?: number | null;
/**
* An alternative to sampling with temperature, called nucleus sampling, where the model considers the results
* of the tokens with `top_p` probability mass. So 0.1 means only the tokens comprising the top 10% probability
* mass are considered. We generally recommend altering this or temperature but not both. */
readonly topP?: number | null;
readonly rawData?: SerializedData;
constructor(
fields: Omit<AiLlmEndpointParamsAws, 'type'> &
Partial<Pick<AiLlmEndpointParamsAws, 'type'>>,
) {
if (fields.type !== undefined) {
this.type = fields.type;
}
if (fields.temperature !== undefined) {
this.temperature = fields.temperature;
}
if (fields.topP !== undefined) {
this.topP = fields.topP;
}
if (fields.rawData !== undefined) {
this.rawData = fields.rawData;
}
}
}
export interface AiLlmEndpointParamsAwsInput {
/**
* The type of the AI LLM endpoint params object for AWS.
* This parameter is **required**. */
readonly type?: AiLlmEndpointParamsAwsTypeField;
/**
* What sampling temperature to use, between 0 and 1. Higher values like 0.8 will make the output more random,
* while lower values like 0.2 will make it more focused and deterministic.
* We generally recommend altering this or `top_p` but not both. */
readonly temperature?: number | null;
/**
* An alternative to sampling with temperature, called nucleus sampling, where the model considers the results
* of the tokens with `top_p` probability mass. So 0.1 means only the tokens comprising the top 10% probability
* mass are considered. We generally recommend altering this or temperature but not both. */
readonly topP?: number | null;
readonly rawData?: SerializedData;
}
export function serializeAiLlmEndpointParamsAwsTypeField(
val: AiLlmEndpointParamsAwsTypeField,
): SerializedData {
return val;
}
export function deserializeAiLlmEndpointParamsAwsTypeField(
val: SerializedData,
): AiLlmEndpointParamsAwsTypeField {
if (val == 'aws_params') {
return val;
}
throw new BoxSdkError({
message: "Can't deserialize AiLlmEndpointParamsAwsTypeField",
});
}
export function serializeAiLlmEndpointParamsAws(
val: AiLlmEndpointParamsAws,
): SerializedData {
return {
['type']: serializeAiLlmEndpointParamsAwsTypeField(val.type),
['temperature']: val.temperature,
['top_p']: val.topP,
};
}
export function deserializeAiLlmEndpointParamsAws(
val: SerializedData,
): AiLlmEndpointParamsAws {
if (!sdIsMap(val)) {
throw new BoxSdkError({
message: 'Expecting a map for "AiLlmEndpointParamsAws"',
});
}
if (val.type == void 0) {
throw new BoxSdkError({
message:
'Expecting "type" of type "AiLlmEndpointParamsAws" to be defined',
});
}
const type: AiLlmEndpointParamsAwsTypeField =
deserializeAiLlmEndpointParamsAwsTypeField(val.type);
if (!(val.temperature == void 0) && !sdIsNumber(val.temperature)) {
throw new BoxSdkError({
message:
'Expecting number for "temperature" of type "AiLlmEndpointParamsAws"',
});
}
const temperature: undefined | number =
val.temperature == void 0 ? void 0 : val.temperature;
if (!(val.top_p == void 0) && !sdIsNumber(val.top_p)) {
throw new BoxSdkError({
message: 'Expecting number for "top_p" of type "AiLlmEndpointParamsAws"',
});
}
const topP: undefined | number = val.top_p == void 0 ? void 0 : val.top_p;
return {
type: type,
temperature: temperature,
topP: topP,
} satisfies AiLlmEndpointParamsAws;
}
export function serializeAiLlmEndpointParamsAwsInput(
val: AiLlmEndpointParamsAwsInput,
): SerializedData {
return {
['type']:
val.type == void 0
? val.type
: serializeAiLlmEndpointParamsAwsTypeField(val.type),
['temperature']: val.temperature,
['top_p']: val.topP,
};
}
export function deserializeAiLlmEndpointParamsAwsInput(
val: SerializedData,
): AiLlmEndpointParamsAwsInput {
if (!sdIsMap(val)) {
throw new BoxSdkError({
message: 'Expecting a map for "AiLlmEndpointParamsAwsInput"',
});
}
const type: undefined | AiLlmEndpointParamsAwsTypeField =
val.type == void 0
? void 0
: deserializeAiLlmEndpointParamsAwsTypeField(val.type);
if (!(val.temperature == void 0) && !sdIsNumber(val.temperature)) {
throw new BoxSdkError({
message:
'Expecting number for "temperature" of type "AiLlmEndpointParamsAwsInput"',
});
}
const temperature: undefined | number =
val.temperature == void 0 ? void 0 : val.temperature;
if (!(val.top_p == void 0) && !sdIsNumber(val.top_p)) {
throw new BoxSdkError({
message:
'Expecting number for "top_p" of type "AiLlmEndpointParamsAwsInput"',
});
}
const topP: undefined | number = val.top_p == void 0 ? void 0 : val.top_p;
return {
type: type,
temperature: temperature,
topP: topP,
} satisfies AiLlmEndpointParamsAwsInput;
}