UNPKG

botbuilder-dialogs

Version:

A dialog stack based conversation manager for Microsoft BotBuilder.

169 lines 7.33 kB
"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.findValues = void 0; const tokenizer_1 = require("./tokenizer"); /** * INTERNAL: Low-level function that searches for a set of values within an utterance. Higher level * functions like `findChoices()` and `recognizeChoices()` are layered above this function. In most * cases its easier to just call one of the higher level functions instead but this function contains * the fuzzy search algorithm that drives choice recognition. * * @param utterance The text or user utterance to search over. * @param values List of values to search over. * @param options (Optional) options used to tweak the search that's performed. * @returns A list of found values. */ // tslint:disable-next-line:max-func-body-length function findValues(utterance, values, options) { function indexOfToken(token, startPos) { for (let i = startPos; i < tokens.length; i++) { if (tokens[i].normalized === token.normalized) { return i; } } return -1; } function findExactMatch(utterance, values) { const entry = values.find(({ value }) => value.toLowerCase() === utterance.toLowerCase()); if (!entry) { return null; } return { text: utterance, start: 0, end: utterance.length - 1, typeName: 'value', resolution: { value: entry.value, index: entry.index, score: 1, }, }; } const exactMatch = findExactMatch(utterance, values); if (exactMatch) { return [exactMatch]; } function matchValue(index, value, vTokens, startPos) { // Match value to utterance and calculate total deviation. // - The tokens are matched in order so "second last" will match in // "the second from last one" but not in "the last from the second one". // - The total deviation is a count of the number of tokens skipped in the // match so for the example above the number of tokens matched would be // 2 and the total deviation would be 1. let matched = 0; let totalDeviation = 0; let start = -1; let end = -1; vTokens.forEach((token) => { // Find the position of the token in the utterance. const pos = indexOfToken(token, startPos); if (pos >= 0) { // Calculate the distance between the current tokens position and the previous tokens distance. const distance = matched > 0 ? pos - startPos : 0; if (distance <= maxDistance) { // Update count of tokens matched and move start pointer to search for next token after // the current token. matched++; totalDeviation += distance; startPos = pos + 1; // Update start & end position that will track the span of the utterance that's matched. if (start < 0) { start = pos; } end = pos; } } }); // Calculate score and format result // - The start & end positions and the results text field will be corrected by the caller. let result; if (matched > 0 && (matched === vTokens.length || opt.allowPartialMatches)) { // Percentage of tokens matched. If matching "second last" in // "the second from last one" the completeness would be 1.0 since // all tokens were found. const completeness = matched / vTokens.length; // Accuracy of the match. The accuracy is reduced by additional tokens // occurring in the value that weren't in the utterance. So an utterance // of "second last" matched against a value of "second from last" would // result in an accuracy of 0.5. const accuracy = matched / (matched + totalDeviation); // The final score is simply the completeness multiplied by the accuracy. const score = completeness * accuracy; // Format result result = { start: start, end: end, typeName: 'value', resolution: { value: value, index: index, score: score, }, }; } return result; } // Sort values in descending order by length so that the longest value is searched over first. const list = values.sort((a, b) => b.value.length - a.value.length); // Search for each value within the utterance. let matches = []; const opt = options || {}; const tokenizer = opt.tokenizer || tokenizer_1.defaultTokenizer; const tokens = tokenizer(utterance, opt.locale); const maxDistance = opt.maxTokenDistance !== undefined ? opt.maxTokenDistance : 2; list.forEach((entry) => { // Find all matches for a value // - To match "last one" in "the last time I chose the last one" we need // to re-search the string starting from the end of the previous match. // - The start & end position returned for the match are token positions. let startPos = 0; const vTokens = tokenizer(entry.value.trim(), opt.locale); while (startPos < tokens.length) { const match = matchValue(entry.index, entry.value, vTokens, startPos); if (match) { startPos = match.end + 1; matches.push(match); } else { break; } } }); // Sort matches by score descending matches = matches.sort((a, b) => b.resolution.score - a.resolution.score); // Filter out duplicate matching indexes and overlapping characters. // - The start & end positions are token positions and need to be translated to // character positions before returning. We also need to populate the "text" // field as well. const results = []; const foundIndexes = {}; const usedTokens = {}; matches.forEach((match) => { // Apply filters let add = !Object.prototype.hasOwnProperty.call(foundIndexes, match.resolution.index); for (let i = match.start; i <= match.end; i++) { if (usedTokens[i]) { add = false; break; } } // Add to results if (add) { // Update filter info foundIndexes[match.resolution.index] = true; for (let i = match.start; i <= match.end; i++) { usedTokens[i] = true; } // Translate start & end and populate text field match.start = tokens[match.start].start; match.end = tokens[match.end].end; match.text = utterance.substring(match.start, match.end + 1); results.push(match); } }); // Return the results sorted by position in the utterance return results.sort((a, b) => a.start - b.start); } exports.findValues = findValues; //# sourceMappingURL=findValues.js.map